1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {GradientAnisotropicDiffusionImageFilterOutput.png}
// ARGUMENTS: 15 0.1 3
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The \doxygen{GradientAnisotropicDiffusionImageFilter} implements an
// $N$-dimensional version of the classic Perona-Malik anisotropic diffusion
// equation for scalar-valued images \cite{Perona1990}.
//
// The conductance term for this implementation is chosen as a function of
// the gradient magnitude of the image at each point, reducing the strength
// of diffusion at edge pixels.
//
// \begin{equation}
// C(\mathbf{x}) = e^{-(\frac{\parallel \nabla U(\mathbf{x})
// \parallel}{K})^2} \end{equation}
//
// The numerical implementation of this equation is similar to that described
// in the Perona-Malik paper \cite{Perona1990}, but uses a more robust
// technique for gradient magnitude estimation and has been generalized to
// $N$-dimensions.
//
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGradientAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 6)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile ";
std::cerr << "numberOfIterations timeStep conductance" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Types should be selected based on the pixel types required for the
// input and output images. The image types are defined using the pixel
// type and the dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InputPixelType = float;
using OutputPixelType = float;
using InputImageType = itk::Image<InputPixelType, 2>;
using OutputImageType = itk::Image<OutputPixelType, 2>;
// Software Guide : EndCodeSnippet
using ReaderType = itk::ImageFileReader<InputImageType>;
// Software Guide : BeginLatex
//
// The filter type is now instantiated using both the input image and the
// output image types. The filter object is created by the \code{New()}
// method.
//
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!New()}
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using FilterType =
itk::GradientAnisotropicDiffusionImageFilter<InputImageType,
OutputImageType>;
auto filter = FilterType::New();
// Software Guide : EndCodeSnippet
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another filter. Here,
// an image reader is used as source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
const unsigned int numberOfIterations = std::stoi(argv[3]);
const double timeStep = std::stod(argv[4]);
const double conductance = std::stod(argv[5]);
// Software Guide : BeginLatex
//
// This filter requires three parameters: the number of iterations to be
// performed, the time step and the conductance parameter used in the
// computation of the level set evolution. These parameters are set using
// the methods \code{SetNumberOfIterations()}, \code{SetTimeStep()} and
// \code{SetConductanceParameter()} respectively. The filter can be
// executed by invoking \code{Update()}.
//
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetConductanceParameter()}
// \index{itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
// \index{SetTimeStep()!itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
// \index{SetNumberOfIterations()!itk::Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNumberOfIterations(numberOfIterations);
filter->SetTimeStep(timeStep);
filter->SetConductanceParameter(conductance);
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Typical values for the time step are $0.25$ in $2D$ images and $0.125$
// in $3D$ images. The number of iterations is typically set to $5$; more
// iterations result in further smoothing and will increase the computing
// time linearly.
//
// Software Guide : EndLatex
//
// The output of the filter is rescaled here and then sent to a writer.
//
using WritePixelType = unsigned char;
using WriteImageType = itk::Image<WritePixelType, 2>;
using RescaleFilterType =
itk::RescaleIntensityImageFilter<OutputImageType, WriteImageType>;
auto rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
using WriterType = itk::ImageFileWriter<WriteImageType>;
auto writer = WriterType::New();
writer->SetFileName(argv[2]);
rescaler->SetInput(filter->GetOutput());
writer->SetInput(rescaler->GetOutput());
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.44\textwidth]{GradientAnisotropicDiffusionImageFilterOutput}
// \itkcaption[GradientAnisotropicDiffusionImageFilter output]{Effect of the
// GradientAnisotropicDiffusionImageFilter on a slice from a MRI Proton
// Density image of the brain.}
// \label{fig:GradientAnisotropicDiffusionImageFilterInputOutput}
// \end{figure}
//
// Figure \ref{fig:GradientAnisotropicDiffusionImageFilterInputOutput}
// illustrates the effect of this filter on a MRI proton density image of
// the brain. In this example the filter was run with a time step of
// $0.25$, and $5$ iterations. The figure shows how homogeneous regions
// are
// smoothed and edges are preserved.
//
// \relatedClasses
// \begin{itemize}
// \item \doxygen{BilateralImageFilter}
// \item \doxygen{CurvatureAnisotropicDiffusionImageFilter}
// \item \doxygen{CurvatureFlowImageFilter}
// \end{itemize}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|