File: VisibleHumanStreamReadWrite.cxx

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (205 lines) | stat: -rw-r--r-- 8,074 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkRawImageIO.h"
#include "itkNumericSeriesFileNames.h"
#include "itkImageSeriesReader.h"
#include "itkImageFileWriter.h"
#include "itkSimpleFilterWatcher.h"
#include "itkShrinkImageFilter.h"
#include "itkComposeImageFilter.h"
#include "itkExtractImageFilter.h"
#include "itkShrinkImageFilter.h"
#include "itkMeanImageFilter.h"

// The Insight Toolkit was originally motivated by a need for software
// tools to segment and register the National Library of Medicine’s
// Visible Human Project data sets. The data is freely available
// through NLM’s website [3]. The original Visible Male cryosectional
// images are non-interlaced 24-bit RGB pixels with a resolution of
// 2048x1216 pixels by 1871 slices with a physical spacing of
// approximately 0.33 mm in slice and 1.0 mm between slices. These
// dimensions results in about 13 gigabytes of data, which is an
// appropriate size to demonstrate streaming. The following are two
// examples of streaming which shows all three IO classes capable of
// streaming along with the two types of streaming supported by the
// writer.
//
// A coronal slice is a classic view of the Visible Male. The
// following is an example that reads the entire raw dataset and
// generates that classic image:

int
main(int argc, char * argv[])
{
  if (argc < 3)
  {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " visibleHumanPath  outputImageFile" << std::endl;
    return EXIT_FAILURE;
  }

  std::string visibleHumanPath = argv[1];
  std::string outputImageFile = argv[2];

  using RGBPixelType = itk::RGBPixel<unsigned char>;
  using PixelType = unsigned char;
  using ImageType = itk::Image<PixelType, 3>;
  using RGB3DImageType = itk::Image<RGBPixelType, 3>;
  using RGB2DImageType = itk::Image<RGBPixelType, 2>;

  // generate the names of the decompressed Visible Male images
  using NameGeneratorType = itk::NumericSeriesFileNames;
  auto nameGenerator = NameGeneratorType::New();
  nameGenerator->SetSeriesFormat(visibleHumanPath + "a_vm%04d.raw");
  nameGenerator->SetStartIndex(1001);
  nameGenerator->SetEndIndex(2878);
  nameGenerator->SetIncrementIndex(1);

  // create an ImageIO for the red channel
  using ImageIOType = itk::RawImageIO<PixelType, 2>;
  auto rimageio = ImageIOType::New();
  rimageio->SetDimensions(0, 2048);
  rimageio->SetDimensions(1, 1216);
  rimageio->SetSpacing(0, .33);
  rimageio->SetSpacing(1, .33);
  rimageio->SetHeaderSize(rimageio->GetImageSizeInPixels() * 0);


  // create an ImageIO for the green channel
  auto gimageio = ImageIOType::New();
  gimageio->SetDimensions(0, 2048);
  gimageio->SetDimensions(1, 1216);
  gimageio->SetSpacing(0, .33);
  gimageio->SetSpacing(1, .33);
  gimageio->SetHeaderSize(gimageio->GetImageSizeInPixels() * 1);


  // create an ImageIO for the blue channel
  auto bimageio = ImageIOType::New();
  bimageio->SetDimensions(0, 2048);
  bimageio->SetDimensions(1, 1216);
  bimageio->SetSpacing(0, .33);
  bimageio->SetSpacing(1, .33);
  bimageio->SetHeaderSize(bimageio->GetImageSizeInPixels() * 2);

  using SeriesReaderType = itk::ImageSeriesReader<ImageType>;
  auto rreader = SeriesReaderType::New();
  rreader->SetFileNames(nameGenerator->GetFileNames());
  rreader->SetImageIO(rimageio);
  // the z-spacing will default to be correctly 1mm

  auto greader = SeriesReaderType::New();
  greader->SetFileNames(nameGenerator->GetFileNames());
  greader->SetImageIO(gimageio);

  auto breader = SeriesReaderType::New();
  breader->SetFileNames(nameGenerator->GetFileNames());
  breader->SetImageIO(bimageio);

  using ComposeRGBFilterType =
    itk::ComposeImageFilter<ImageType, RGB3DImageType>;
  auto composeRGB = ComposeRGBFilterType::New();
  composeRGB->SetInput1(rreader->GetOutput());
  composeRGB->SetInput2(greader->GetOutput());
  composeRGB->SetInput3(breader->GetOutput());

  // this filter is needed if square pixels are needed
  //   const int xyShrinkFactor = 3;
  //   using ShrinkImageFilterType = itk::ShrinkImageFilter<  RGB3DImageType,
  //   RGB3DImageType >; auto shrinker =
  //   ShrinkImageFilterType::New(); shrinker->SetInput(
  //   composeRGB->GetOutput() ); shrinker->SetShrinkFactors(  xyShrinkFactor
  //   ); shrinker->SetShrinkFactor( 2, 1 );

  // update output information to know propagate the size of the largest
  // possible region
  composeRGB->UpdateOutputInformation();
  RGB3DImageType::RegionType coronalSlice =
    composeRGB->GetOutput()->GetLargestPossibleRegion();
  coronalSlice.SetIndex(1, 448);
  coronalSlice.SetSize(1, 0);

  // another interesting view
  //   RGB3DImageType::RegionType sagittalSlice =
  //   shrinker->GetOutput()->GetLargestPossibleRegion();
  //   sagittalSlice.SetIndex( 0, 1024 ); sagittalSlice.SetSize( 0, 0 );

  // create a 2D coronal slice from the volume
  using ExtractFilterType =
    itk::ExtractImageFilter<RGB3DImageType, RGB2DImageType>;
  auto extract = ExtractFilterType::New();
  // Note on direction cosines: Because our plane is in the xz-plane,
  // the default submatrix would be invalid, so we must use the identity
  extract->SetDirectionCollapseToIdentity();
  extract->InPlaceOn();
  extract->SetInput(composeRGB->GetOutput());
  extract->SetExtractionRegion(coronalSlice);


  using ImageWriterType = itk::ImageFileWriter<RGB2DImageType>;
  auto writer = ImageWriterType::New();
  writer->SetFileName(outputImageFile);

  // this line is a request for the number of regions
  // the image will be broken into
  writer->SetNumberOfStreamDivisions(200);
  writer->SetInput(extract->GetOutput());

  itk::SimpleFilterWatcher watcher1(writer, "stream writing");


  try
  {
    // update by streaming
    writer->Update();
  }
  catch (const itk::ExceptionObject & err)
  {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
  }

  // This example creates a RawImageIO and ImageSeriesReader for each
  // color channel in the data. Notice that there are no special methods
  // that are needed to enable streaming; it will just respond correctly
  // to requests from the pipeline. In the ComposeImageFilter, the
  // channels are composited into a single color image. Then the
  // information is updated to initialize the coronal slice region to be
  // extracted. The final filter, ImageFileWriter, writes out the file
  // as a Meta Image type, which fully supports IO streaming.
  //
  // The most interesting aspect of this example is not the filters
  // used, but how ITK’s pipeline manages its execution. The final
  // output image is 2048 by 1878 pixels. The ImageFileWriter breaks
  // this 2D image into 200 separate regions, which have the size of
  // about 2048 by 10 pixels; each region is streamed and processes
  // through the pipeline. The writer makes 200 calls to its ImageIO
  // object to write the individual regions. The extractor converts this
  // 2D region into a 3D region of 2048 by 1 by 10 pixels, which is
  // propagated to the ImageSeriesReader. Then the reader reads the
  // entire slice, but only copies the requested sub-region to its
  // output. This pipeline is so efficient because very little data is
  // actually processed at any one stage of the pipeline due to
  // streaming IO.


  return EXIT_SUCCESS;
}