1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{itk::EllipseSpatialObject}
//
// \doxygen{EllipseSpatialObject} defines an n-dimensional ellipse. Like
// other spatial objects this class derives from
// \doxygen{SpatialObject}. Let's start by including the appropriate header
// file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkEllipseSpatialObject.h"
// Software Guide : EndCodeSnippet
int
main(int, char *[])
{
// Software Guide : BeginLatex
//
// Like most of the SpatialObjects, the \doxygen{EllipseSpatialObject} is
// templated over the dimension of the space. In this example we create a
// 3-dimensional ellipse.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using EllipseType = itk::EllipseSpatialObject<3>;
auto myEllipse = EllipseType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we set a radius for each dimension. By default the radius is set
// to 1. Additionally, after setting the SpatialObject's radius, we call
// \code{Update()} to update all transforms, bounding box, and other
// convenience variables within the class that its other member functions
// (e.g., \code{IsInsideInWorldSpace()}) depend upon.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
EllipseType::ArrayType radius;
for (unsigned int i = 0; i < 3; ++i)
{
radius[i] = i;
}
myEllipse->SetRadiusInObjectSpace(radius);
myEllipse->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Or if we have the same radius in each dimension we can do
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
myEllipse->SetRadiusInObjectSpace(2.0);
myEllipse->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can then display the current radius by using the
// \code{GetRadiusInObjectSpace()} function:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
EllipseType::ArrayType myCurrentRadius =
myEllipse->GetRadiusInObjectSpace();
std::cout << "Current radius is " << myCurrentRadius << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Like other SpatialObjects, we can query the object if a point is inside
// the object by using the \code{IsInsideInWorldSpace(itk::Point)} function.
// This function expects the point to be in world coordinates.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itk::Point<double, 3> insidePoint;
insidePoint.Fill(1.0);
if (myEllipse->IsInsideInWorldSpace(insidePoint))
{
std::cout << "The point " << insidePoint;
std::cout << " is really inside the ellipse" << std::endl;
}
itk::Point<double, 3> outsidePoint;
outsidePoint.Fill(3.0);
if (!myEllipse->IsInsideInWorldSpace(outsidePoint))
{
std::cout << "The point " << outsidePoint;
std::cout << " is really outside the ellipse" << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// All spatial objects can be queried for a value at a point. The
// \code{IsEvaluableAtInWorldSpace()} function returns a boolean to know
// if the object is evaluable at a particular point.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if (myEllipse->IsEvaluableAtInWorldSpace(insidePoint))
{
std::cout << "The point " << insidePoint;
std::cout << " is evaluable at the point " << insidePoint << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If the object is evaluable at that point, the
// \code{ValueAtInWorldSpace()} function returns the current value at that
// position. Most of the objects returns a boolean value which is set to
// true when the point is inside the object and false when it is outside.
// However, for some objects, it is more interesting to return a value
// representing, for instance, the distance from the center of the object
// or the distance from the boundary.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double value;
myEllipse->ValueAtInWorldSpace(insidePoint, value);
std::cout << "The value inside the ellipse is: " << value << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Like other spatial objects, we can also query the bounding box of the
// object by using \code{GetMyBoundingBoxInWorldSpace()}. The resulting
// bounding box is the world space.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const EllipseType::BoundingBoxType * boundingBox =
myEllipse->GetMyBoundingBoxInWorldSpace();
std::cout << "Bounding Box: " << boundingBox->GetBounds() << std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|