1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// This example demonstrates usage of the itk::BayesianClassifierImageFilter
// The input to this example is an itk::VectorImage that represents pixel
// memberships to 'n' classes.
//
// This image is conveniently generated by the
// BayesianClassifierInitializer.cxx example.
//
// The output of the filter is a label map (an image of unsigned char's) with
// pixel values indicating the classes they correspond to. Pixels with
// intensity 0 belong to the 0th class, 1 belong to the 1st class etc. The
// classification is done by applying a Maximum decision rule to the posterior
// image.
//
// The filter allows you to specify a prior image as well, (although this is
// not done in this example). The prior image, if specified will be a
// itk::VectorImage with as many components as the number of classes. The
// posterior image is then generated by multiplying the prior image with the
// membership image. If the prior image is not specified, the posterior image
// is the same as the membership image.
//
// The filter optionally accepts a smoothingIterations argument. See the
// itk::BayesianClassifierImageFilter for details on how this affects the
// classification. The philosophy is that the filter allows you to iteratively
// smooth the posteriors prior to applying the decision rule. It is hoped
// that this would yield a better classification. The user will need to plug
// in his own smoothing filter. In this case, we specify a
// GradientAnisotropicDiffusionImageFilter.
//
// Example args:
// Memberships.mhd Labelmap.png 3
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkBayesianClassifierImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
int
main(int argc, char * argv[])
{
if (argc < 3)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile [smoothingIterations]"
<< std::endl;
return EXIT_FAILURE;
}
// input parameters
const char * membershipImageFileName = argv[1];
const char * labelMapImageFileName = argv[2];
// setup reader
constexpr unsigned int Dimension = 2;
using InputPixelType = float;
using InputImageType = itk::VectorImage<InputPixelType, Dimension>;
using ReaderType = itk::ImageFileReader<InputImageType>;
auto reader = ReaderType::New();
reader->SetFileName(membershipImageFileName);
using LabelType = unsigned char;
using PriorType = float;
using PosteriorType = float;
using ClassifierFilterType =
itk::BayesianClassifierImageFilter<InputImageType,
LabelType,
PosteriorType,
PriorType>;
auto filter = ClassifierFilterType::New();
filter->SetInput(reader->GetOutput());
if (argv[3])
{
filter->SetNumberOfSmoothingIterations(std::stoi(argv[3]));
using ExtractedComponentImageType =
ClassifierFilterType::ExtractedComponentImageType;
using SmoothingFilterType = itk::GradientAnisotropicDiffusionImageFilter<
ExtractedComponentImageType,
ExtractedComponentImageType>;
auto smoother = SmoothingFilterType::New();
smoother->SetNumberOfIterations(1);
smoother->SetTimeStep(0.125);
smoother->SetConductanceParameter(3);
filter->SetSmoothingFilter(smoother);
}
// SET FILTER'S PRIOR PARAMETERS
// do nothing here to default to uniform priors
// otherwise set the priors to some user provided values
//
// Setup writer.. Rescale the label map to the dynamic range of the
// datatype and write it
//
using ClassifierOutputImageType = ClassifierFilterType::OutputImageType;
using OutputImageType = itk::Image<unsigned char, Dimension>;
using RescalerType =
itk::RescaleIntensityImageFilter<ClassifierOutputImageType,
OutputImageType>;
auto rescaler = RescalerType::New();
rescaler->SetInput(filter->GetOutput());
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
using WriterType = itk::ImageFileWriter<OutputImageType>;
auto writer = WriterType::New();
writer->SetFileName(labelMapImageFileName);
//
// Write labelmap to file
//
writer->SetInput(rescaler->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception caught: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Testing print
filter->Print(std::cout);
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|