1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
//
// This is an example of the itk::BayesianClassifierInitializationImageFilter.
// The example's goal is to serve as an initializer for the
// BayesianClassifier.cxx example also found in this directory.
//
// This example takes an input image (to be classified) and generates
// membership images. The membership images determine the degree to which each
// pixel belongs to a class.
//
// The membership image generated by the filter is an
// itk::VectorImage, (with pixels organized as follows: For a 2D image,
// its essentially a 3D array on file with DataType[y][x][c] where c is the
// number of classes and DataType is the template parameter of the filter
// (defaults to float). For a 3D image, it will be organized as
// Datatype[z][y][x][c])
//
// The example also optionally takes in two more arguments, as a convenience
// to the user. These arguments extract the specified component 'c' from the
// membership image and rescale, so the user can fire up a typical image
// viewer and see the relative pixel memberships to class 'c'.
//
// Example args:
// BrainProtonDensitySlice.png Memberships.mhd 4 2 Class2.png
//
// Here Memberships.mhd will be a 2x2x4 image containing pixel memberships
// Class2.png shows pixel memberships to the third class, (rescaled for
// display)
//
// Notes:
// The default behaviour of the filter is to generate memberships by
// centering
// gaussian density functions around K-means of the pixel intensities in the
// image. The filter allows you to specify your own membership functions as
// well.
//
#include "itkImage.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkImageRegionConstIterator.h"
int
main(int argc, char * argv[])
{
constexpr unsigned int Dimension = 2;
if (argc < 4)
{
std::cerr
<< "Usage arguments: InputImage MembershipImage numberOfClasses "
"[componentToExtract ExtractedImage]"
<< std::endl;
std::cerr
<< " The MembershipImage image written is a VectorImage, ( an image "
"with multiple components ) ";
std::cerr << "Given that most viewers can't see vector images, we will "
"optionally "
"extract a component and ";
std::cerr << "write it out as a scalar image as well." << std::endl;
return EXIT_FAILURE;
}
using ImageType = itk::Image<unsigned char, Dimension>;
using BayesianInitializerType =
itk::BayesianClassifierInitializationImageFilter<ImageType>;
auto bayesianInitializer = BayesianInitializerType::New();
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
bayesianInitializer->SetInput(reader->GetOutput());
bayesianInitializer->SetNumberOfClasses(std::stoi(argv[3]));
// TODO add test where we specify membership functions
using WriterType =
itk::ImageFileWriter<BayesianInitializerType::OutputImageType>;
auto writer = WriterType::New();
writer->SetInput(bayesianInitializer->GetOutput());
writer->SetFileName(argv[2]);
try
{
bayesianInitializer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
if (argv[4] && argv[5])
{
using MembershipImageType = BayesianInitializerType::OutputImageType;
using ExtractedComponentImageType =
itk::Image<MembershipImageType::InternalPixelType, Dimension>;
auto extractedComponentImage = ExtractedComponentImageType::New();
extractedComponentImage->CopyInformation(
bayesianInitializer->GetOutput());
extractedComponentImage->SetBufferedRegion(
bayesianInitializer->GetOutput()->GetBufferedRegion());
extractedComponentImage->SetRequestedRegion(
bayesianInitializer->GetOutput()->GetRequestedRegion());
extractedComponentImage->Allocate();
using ConstIteratorType =
itk::ImageRegionConstIterator<MembershipImageType>;
using IteratorType =
itk::ImageRegionIterator<ExtractedComponentImageType>;
ConstIteratorType cit(
bayesianInitializer->GetOutput(),
bayesianInitializer->GetOutput()->GetBufferedRegion());
IteratorType it(extractedComponentImage,
extractedComponentImage->GetLargestPossibleRegion());
const unsigned int componentToExtract = std::stoi(argv[4]);
cit.GoToBegin();
it.GoToBegin();
while (!cit.IsAtEnd())
{
it.Set(cit.Get()[componentToExtract]);
++it;
++cit;
}
// Write out the rescaled extracted component
using OutputImageType = itk::Image<unsigned char, Dimension>;
using RescalerType =
itk::RescaleIntensityImageFilter<ExtractedComponentImageType,
OutputImageType>;
auto rescaler = RescalerType::New();
rescaler->SetInput(extractedComponentImage);
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
using ExtractedComponentWriterType =
itk::ImageFileWriter<OutputImageType>;
auto rescaledImageWriter = ExtractedComponentWriterType::New();
rescaledImageWriter->SetInput(rescaler->GetOutput());
rescaledImageWriter->SetFileName(argv[5]);
rescaledImageWriter->Update();
}
return EXIT_SUCCESS;
}
|