File: itkPyBuffer.hxx

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (181 lines) | stat: -rw-r--r-- 4,703 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkPyBuffer_hxx
#define itkPyBuffer_hxx


#include "itkImportImageContainer.h"

namespace itk
{

template <class TImage>
PyObject *
PyBuffer<TImage>::_GetArrayViewFromImage(ImageType * image)
{
  PyObject * memoryView = NULL;
  Py_buffer  pyBuffer;
  memset(&pyBuffer, 0, sizeof(Py_buffer));

  Py_ssize_t len = 1;
  size_t     pixelSize = sizeof(ComponentType);
  int        res = 0;

  if (!image)
  {
    throw std::runtime_error("Input image is null");
  }

  image->Update();

  ComponentType * buffer =
    const_cast<ComponentType *>(reinterpret_cast<const ComponentType *>(image->GetBufferPointer()));

  void * itkImageBuffer = (void *)(buffer);

  // Computing the length of data
  const int numberOfComponents = image->GetNumberOfComponentsPerPixel();
  SizeType  size = image->GetBufferedRegion().GetSize();

  for (unsigned int dim = 0; dim < ImageDimension; ++dim)
  {
    len *= size[dim];
  }

  len *= numberOfComponents;
  len *= pixelSize;

  res = PyBuffer_FillInfo(&pyBuffer, NULL, (void *)itkImageBuffer, len, 0, PyBUF_CONTIG);
  memoryView = PyMemoryView_FromBuffer(&pyBuffer);

  PyBuffer_Release(&pyBuffer);

  return memoryView;
}

template <class TImage>
auto
PyBuffer<TImage>::_GetImageViewFromArray(PyObject * arr, PyObject * shape, PyObject * numOfComponent)
  -> const OutputImagePointer
{
  PyObject * shapeseq = NULL;
  PyObject * item = NULL;

  Py_ssize_t bufferLength;
  Py_buffer  pyBuffer;
  memset(&pyBuffer, 0, sizeof(Py_buffer));

  SizeType      size;
  SizeType      sizeFortran;
  SizeValueType numberOfPixels = 1;

  const void * buffer;

  long         numberOfComponents = 1;
  unsigned int dimension = 0;


  size_t pixelSize = sizeof(ComponentType);
  size_t len = 1;

  if (PyObject_GetBuffer(arr, &pyBuffer, PyBUF_ND | PyBUF_ANY_CONTIGUOUS) == -1)
  {
    PyErr_SetString(PyExc_RuntimeError, "Cannot get an instance of NumPy array.");
    PyBuffer_Release(&pyBuffer);
    return nullptr;
  }
  else
  {
    bufferLength = pyBuffer.len;
    buffer = pyBuffer.buf;
  }
  PyBuffer_Release(&pyBuffer);

  shapeseq = PySequence_Fast(shape, "expected sequence");
  dimension = PySequence_Size(shape);

  numberOfComponents = PyInt_AsLong(numOfComponent);

  for (unsigned int i = 0; i < dimension; ++i)
  {
    item = PySequence_GetItem(shapeseq, i);
    size[i] = (SizeValueType)PyInt_AsLong(item);
    sizeFortran[dimension - 1 - i] = (SizeValueType)PyInt_AsLong(item);
    Py_DECREF(item);
    numberOfPixels *= size[i];
  }

  bool isFortranContiguous = false;
  if (pyBuffer.strides != NULL && pyBuffer.itemsize == pyBuffer.strides[0])
  {
    isFortranContiguous = true;
  }

  len = numberOfPixels * numberOfComponents * pixelSize;
  if (bufferLength != len)
  {
    PyErr_SetString(PyExc_RuntimeError, "Size mismatch of image and Buffer.");
    PyBuffer_Release(&pyBuffer);
    SWIG_Py_DECREF(shapeseq);
    return nullptr;
  }

  IndexType start;
  start.Fill(0);

  RegionType region;
  region.SetIndex(start);
  region.SetSize(size);
  if (isFortranContiguous)
  {
    region.SetSize(sizeFortran);
  }
  else
  {
    region.SetSize(size);
  }

  PointType origin;
  origin.Fill(0.0);

  SpacingType spacing;
  spacing.Fill(1.0);

  using InternalPixelType = typename TImage::InternalPixelType;
  using ImporterType = ImportImageContainer<SizeValueType, InternalPixelType>;
  auto                importer = ImporterType::New();
  constexpr bool      importImageFilterWillOwnTheBuffer = false;
  InternalPixelType * data = (InternalPixelType *)buffer;
  importer->SetImportPointer(data, numberOfPixels, importImageFilterWillOwnTheBuffer);

  OutputImagePointer output = TImage::New();
  output->SetRegions(region);
  output->SetOrigin(origin);
  output->SetSpacing(spacing);
  output->SetPixelContainer(importer);
  output->SetNumberOfComponentsPerPixel(numberOfComponents);

  SWIG_Py_DECREF(shapeseq);
  PyBuffer_Release(&pyBuffer);

  return output;
}

} // namespace itk

#endif