File: PyBuffer.i.in

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (147 lines) | stat: -rw-r--r-- 6,031 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
%extend itkPyBuffer@PyBufferTypes@{
    %pythoncode %{

    def GetArrayViewFromImage(image, keep_axes=False, update=True):
        """Get a NumPy array view of a ITK Image.

        When *keep_axes* is *False*, the NumPy array will have C-order
        indexing. This is the reverse of how indices are specified in ITK,
        i.e. k,j,i versus i,j,k. However C-order indexing is expected by most
        algorithms in NumPy / SciPy.
        """
        import itk

        if image.GetBufferPointer() is None:
            return None

        if update:
            # Ensure the image regions and image pixel buffer have been updated
            # correctly
            source = image.GetSource()
            if source:
                source.UpdateLargestPossibleRegion()

        itksize = image.GetBufferedRegion().GetSize()
        dim     = len(itksize)
        shape   = [int(itksize[idx]) for idx in range(dim)]

        if image.GetNumberOfComponentsPerPixel() > 1 or isinstance(image, itk.VectorImage):
            shape = [image.GetNumberOfComponentsPerPixel(), ] + shape

        if keep_axes == False:
            shape.reverse()

        pixelType     = "@PixelType@"
        numpy_dtype = _get_numpy_pixelid(pixelType)
        memview       = itkPyBuffer@PyBufferTypes@._GetArrayViewFromImage(image)
        ndarr_view  = np.asarray(memview).view(dtype = numpy_dtype).reshape(shape).view(np.ndarray)
        itk_view = NDArrayITKBase(ndarr_view, image)

        return itk_view

    GetArrayViewFromImage = staticmethod(GetArrayViewFromImage)

    def GetArrayFromImage(image, keep_axes=False, update=True):
        """Get a NumPy ndarray from an ITK Image.

        When *keep_axes* is *False*, the NumPy array will have C-order
        indexing. This is the reverse of how indices are specified in ITK,
        i.e. k,j,i versus i,j,k. However C-order indexing is expected by most
        algorithms in NumPy / SciPy.

        This is a deep copy of the image buffer and is completely safe and without potential side effects.
        """
        if image.GetBufferPointer() is None:
            return None

        arrayView = itkPyBuffer@PyBufferTypes@.GetArrayViewFromImage(image, keep_axes, update)

        # perform deep copy of the image buffer
        arr = np.array(arrayView, copy=True)

        return arr


    GetArrayFromImage = staticmethod(GetArrayFromImage)

    def GetImageViewFromArray(ndarr, is_vector=False, need_contiguous=True):
        """Get an ITK Image view of a NumPy array.

        If is_vector is True, then a 3D array will be treated as a 2D vector image,
        otherwise it will be treated as a 3D image.

        If the array uses Fortran-order indexing, i.e. i,j,k, the Image Size
        will have the same dimensions as the array shape. If the array uses
        C-order indexing, i.e. k,j,i, the image Size will have the dimensions
        reversed from the array shape.

        Therefore, since the *np.transpose* operator on a 2D array simply
        inverts the indexing scheme, the Image representation will be the
        same for an array and its transpose. If flipping is desired, see
        *np.reshape*.

        By default, a warning is issued if this function is called on a non-contiguous
        array, since a copy is performed and care must be taken to keep a reference
        to the copied array. This warning can be suppressed with need_contiguous=False
        """

        assert ndarr.ndim in (1, 2, 3, 4, 5), \
            "Only arrays of 1, 2, 3, 4 or 5 dimensions are supported."
        if not ndarr.flags['C_CONTIGUOUS'] and not ndarr.flags['F_CONTIGUOUS']:
            ndarr = np.ascontiguousarray(ndarr)
            if need_contiguous:
                import warnings
                msg = """Because the input array was not contiguous, the returned
                image is not a view of the array passed to this function. Instead,
                it is a view of the member "base" of the returned image! If that
                member is ever garbage collected, this view becomes invalid."""
                warnings.warn(msg)

        if is_vector:
            if ndarr.flags['C_CONTIGUOUS']:
                imgview = itkPyBuffer@PyBufferTypes@._GetImageViewFromArray(ndarr, ndarr.shape[-2::-1], ndarr.shape[-1])
            else:
                imgview = itkPyBuffer@PyBufferTypes@._GetImageViewFromArray(ndarr, ndarr.shape[-1:0:-1], ndarr.shape[0])
        else:
            imgview = itkPyBuffer@PyBufferTypes@._GetImageViewFromArray(ndarr, ndarr.shape[::-1], 1)

        # Keep a reference
        imgview._SetBase(ndarr)

        return imgview

    GetImageViewFromArray = staticmethod(GetImageViewFromArray)

    def GetImageFromArray(ndarr, is_vector=False):
        """Get an ITK Image of a NumPy array.

        This is a deep copy of the NumPy array buffer and is completely safe without potential
        side effects.

        If is_vector is True, then a 3D array will be treated as a 2D vector image,
        otherwise it will be treated as a 3D image.

        If the array uses Fortran-order indexing, i.e. i,j,k, the Image Size
        will have the same dimensions as the array shape. If the array uses
        C-order indexing, i.e. k,j,i, the image Size will have the dimensions
        reversed from the array shape.

        Therefore, since the *np.transpose* operator on a 2D array simply
        inverts the indexing scheme, the Image representation will be the
        same for an array and its transpose. If flipping is desired, see
        *np.reshape*.
        """

        # Create a temporary image view of the array
        imageView = itkPyBuffer@PyBufferTypes@.GetImageViewFromArray(ndarr, is_vector, need_contiguous=False)

        # Duplicate the image to let it manage its own memory buffer
        import itk
        duplicator = itk.ImageDuplicator.New(imageView)
        duplicator.Update()
        return duplicator.GetOutput()

    GetImageFromArray = staticmethod(GetImageFromArray)

  %}
};