1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/*=========================================================================
*
* Portions of this file are subject to the VTK Toolkit Version 3 copyright.
*
* Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
*
* For complete copyright, license and disclaimer of warranty information
* please refer to the NOTICE file at the top of the ITK source tree.
*
*=========================================================================*/
#ifndef itkImageBase_h
#define itkImageBase_h
#include "itkDataObject.h"
#include "itkImageRegion.h"
#include "itkMatrix.h"
#include "itkObjectFactory.h"
#include "itkOffset.h"
#include "itkFixedArray.h"
#include "itkImageHelper.h"
#include "itkFloatTypes.h"
#include <vxl_version.h>
#include "vnl/vnl_matrix_fixed.hxx" // Get the templates
namespace itk
{
/** The default tolerance when comparing the geometry of two images.
*
* The value was chosen based on precisions of file formats such as DICOM,
* to enable interoperability with images saved to file formats with higher precision.
*/
inline constexpr double DefaultImageCoordinateTolerance = 1e-6;
inline constexpr double DefaultImageDirectionTolerance = 1e-6;
/** \class ImageBase
* \brief Base class for templated image classes.
*
* ImageBase is the base class for the templated Image
* classes. ImageBase is templated over the dimension of the image. It
* provides the API and ivars that depend solely on the dimension of
* the image. ImageBase does not store any of the image (pixel) data.
* Storage for the pixels and the pixel access methods are defined in
* subclasses of ImageBase, namely Image and ImageAdaptor.
*
* ImageBase manages the geometry of an image. The geometry of an
* image is defined by its position, orientation, spacing, and extent.
*
* The position and orientation of an image is defined by its "Origin"
* and its "Directions". The "Origin" is the physical position of the
* pixel whose "Index" is all zeros. The "Direction" of an image is a
* matrix whose columns indicate the direction in physical space that
* each dimension of the image traverses. The first column defines the
* direction that the fastest moving index in the image traverses in
* physical space while the last column defines the direction that the
* slowest moving index in the image traverses in physical space.
*
* The extent of an image is defined by the pixel spacing and a set of
* regions. The "Spacing" is the size of a pixel in physical space
* along each dimension. Regions describe a portion of an image grid
* via a starting index for the image array and a size (or number of
* pixels) in each dimension. The ivar LargestPossibleRegion defines
* the size and starting index of the image dataset. The entire image
* dataset, however, may not be resident in memory. The region of the
* image that is resident in memory is defined by the
* "BufferedRegion". The Buffer is a contiguous block of memory. The
* third set of meta-data defines a region of interest, called the
* "RequestedRegion". The RequestedRegion is used by the pipeline
* execution model to define what a filter is requested to produce.
*
* [RegionIndex, RegionSize] C [BufferIndex, BufferSize]
* C [ImageIndex, ImageSize]
*
* ImageBase provides all the methods for converting between the
* physical space and index coordinate
* frames. TransformIndexToPhysicalPoint() converts an Index in the
* pixel array into its coordinates in physical space.
* TransformPhysicalPointToIndex() converts a position in physical
* space into an Index into the pixel array (using
* rounding). Subpixel locations are supported by methods that
* convert to and from ContinuousIndex types.
*
* ImageBase also provides helper routines for the ImageIterators
* which convert an Index to an offset in memory from the first pixel
* address as well as convert an offset in memory from the first pixel
* address to an Index.
*
* \ingroup ImageObjects
* \ingroup ITKSystemObjects
*
* \ingroup ITKCommon
*/
template <unsigned int VImageDimension = 2>
class ITK_TEMPLATE_EXPORT ImageBase : public DataObject
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ImageBase);
/** Standard type alias. */
using Self = ImageBase;
using Superclass = DataObject;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ImageBase);
/** Type of image dimension */
using ImageDimensionType = unsigned int;
/** Dimension of the image. This constant is used by functions that are
* templated over image type (as opposed to being templated over pixel
* type and dimension) when they need compile time access to the dimension
* of the image. */
static constexpr ImageDimensionType ImageDimension = VImageDimension;
/** Index type alias support. An index is used to access pixel values. */
using IndexType = Index<VImageDimension>;
using IndexValueType = typename IndexType::IndexValueType;
/** Offset type alias support. An offset represent relative position
* between indices. */
using OffsetType = Offset<VImageDimension>;
using OffsetValueType = typename OffsetType::OffsetValueType;
/** Size type alias support. A size is used to define region bounds. */
using SizeType = Size<VImageDimension>;
using SizeValueType = typename SizeType::SizeValueType;
/** Region type alias support. A region is used to specify a subset of an image. */
using RegionType = ImageRegion<VImageDimension>;
/** Spacing type alias support. Spacing holds the size of a pixel.
* The spacing is the geometric distance between image samples along
* each dimension. ITK only supports positive spacing values:
* negative values may cause undesirable results. */
using SpacingValueType = SpacePrecisionType;
using SpacingType = Vector<SpacingValueType, VImageDimension>;
/** Origin type alias support. The origin is the geometric coordinates
* of the index (0,0). */
using PointValueType = SpacePrecisionType;
using PointType = Point<PointValueType, VImageDimension>;
/** Direction type alias support. The Direction is a matrix of
* direction cosines that specify the direction in physical space
* between samples along each dimension. */
using DirectionType = Matrix<SpacePrecisionType, VImageDimension, VImageDimension>;
/** Restore object to initialized state. */
void
Initialize() override;
/** Image dimension. The dimension of an image is fixed at construction. */
static unsigned int
GetImageDimension()
{
return VImageDimension;
}
/** Set the origin of the image. The origin is the geometric
* coordinates of the image origin (pixel [0,0]). It is stored internally
* as SpacePrecisionType but may be set from float or double.
* \sa GetOrigin() */
itkSetMacro(Origin, PointType);
virtual void
SetOrigin(const double origin[VImageDimension]);
virtual void
SetOrigin(const float origin[VImageDimension]);
/** Set the direction cosines of the image. The direction cosines
* are vectors that point from one pixel to the next.
*
* Each column of the matrix indicates the direction cosines of the unit vector
* that is parallel to the lines of the image grid corresponding to that
* dimension. For example, an image with Direction matrix
*
* 0.866 0.500
* -0.500 0.866
*
* has an image grid were the fastest changing index (dimension[0]) walks
* over a line that in physical space is oriented parallel to the vector
* (0.866, -0.5). The second fastest changing index (dimension[1]) walks along
* a line that in Physical space is oriented parallel to the vector
* (0.5, 0.866)
*
* The columns of the Direction matrix are expected to form an
* orthogonal right handed coordinate system. But this is not
* checked nor enforced in itk::ImageBase.
*
* For details, please see:
*
* https://www.itk.org/Wiki/Proposals:Orientation#Some_notes_on_the_DICOM_convention_and_current_ITK_usage
*
* \sa GetDirection() */
virtual void
SetDirection(const DirectionType & direction);
/** Get the direction cosines of the image. The direction cosines
* are vectors that point from one pixel to the next.
* For ImageBase and Image, the default direction is identity. */
itkGetConstReferenceMacro(Direction, DirectionType);
/** Get the inverse direction cosines of the image.
* These are calculated automatically in SetDirection, thus there
* is no Set accessor. */
itkGetConstReferenceMacro(InverseDirection, DirectionType);
/** Get the spacing (size of a pixel) `of the image. The
* spacing is the geometric distance between image samples along
* each dimension. The value returned is a Vector<double, VImageDimension>.
* For ImageBase and Image, the default data spacing is unity. */
itkGetConstReferenceMacro(Spacing, SpacingType);
/** Get the origin of the image. The origin is the geometric
* coordinates of the index (0,0). The value returned is a
* Point<double, VImageDimension>. For ImageBase and Image, the
* default origin is 0. */
itkGetConstReferenceMacro(Origin, PointType);
/** Allocate the image memory. The size of the image must
* already be set, e.g. by calling SetRegions() or SetBufferedRegion().
*
* This method should be pure virtual, if backwards compatibility
* was not required.
*
*/
virtual void
Allocate(bool initialize = false);
/** Allocates the pixel buffer of the image, zero-initializing its pixels. `AllocateInitialized()` is equivalent to
* `Allocate(true)`. It is just intended to make the code more readable. */
void
AllocateInitialized()
{
return this->Allocate(true);
}
/** Set the region object that defines the size and starting index
* for the largest possible region this image could represent. This
* is used in determining how much memory would be needed to load an
* entire dataset. It is also used to determine boundary true
* conditions.
* \sa ImageRegion, SetBufferedRegion(), SetRequestedRegion() */
virtual void
SetLargestPossibleRegion(const RegionType & region);
/** Get the region object that defines the size and starting index
* for the largest possible region this image could represent. This
* is used in determining how much memory would be needed to load an
* entire dataset. It is also used to determine boundary true
* conditions.
* \sa ImageRegion, GetBufferedRegion(), GetRequestedRegion() */
virtual const RegionType &
GetLargestPossibleRegion() const
{
return m_LargestPossibleRegion;
}
/** Set the region object that defines the size and starting index
* of the region of the image currently loaded in memory.
* \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
virtual void
SetBufferedRegion(const RegionType & region);
/** Get the region object that defines the size and starting index
* of the region of the image currently loaded in memory.
* \sa ImageRegion, SetLargestPossibleRegion(), SetRequestedRegion() */
virtual const RegionType &
GetBufferedRegion() const
{
return m_BufferedRegion;
}
/** Set the region object that defines the size and starting index
* for the region of the image requested (i.e., the region of the
* image to be operated on by a filter). Setting the RequestedRegion
* does not cause the object to be modified. This method is called
* internally by the pipeline and therefore bypasses the modified
* time calculation.
* \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
virtual void
SetRequestedRegion(const RegionType & region);
/** Set the requested region from this data object to match the requested
* region of the data object passed in as a parameter. This method
* implements the API from DataObject. The data object parameter must be
* castable to an ImageBase. Setting the RequestedRegion does not cause
* the object to be modified. This method is called internally by
* the pipeline and therefore bypasses the modified time
* calculation. */
void
SetRequestedRegion(const DataObject * data) override;
/** Get the region object that defines the size and starting index
* for the region of the image requested (i.e., the region of the
* image to be operated on by a filter).
* \sa ImageRegion, SetLargestPossibleRegion(), SetBufferedRegion() */
virtual const RegionType &
GetRequestedRegion() const
{
return m_RequestedRegion;
}
/** Convenience methods to set the LargestPossibleRegion,
* BufferedRegion and RequestedRegion. Allocate must still be called.
*/
virtual void
SetRegions(const RegionType & region)
{
this->SetLargestPossibleRegion(region);
this->SetBufferedRegion(region);
this->SetRequestedRegion(region);
}
virtual void
SetRegions(const SizeType & size)
{
RegionType region;
region.SetSize(size);
this->Self::SetRegions(region);
}
/** Get the offset table. The offset table gives increments for
* moving from one pixel to next in the current row, column, slice,
* etc.. This table if of size [VImageDimension+1], because its
* values are computed progressively as: {1, N1, N1*N2,
* N1*N2*N3,...,(N1*...*Nn)} Where the values {N1,...,Nn} are the
* elements of the BufferedRegion::Size array. The last element of
* the OffsetTable is equivalent to the BufferSize. Having a
* [VImageDimension+1] size array, simplifies the implementation of
* some data accessing algorithms. The entries in the offset table
* are only valid after the BufferedRegion is set. */
const OffsetValueType *
GetOffsetTable() const
{
return m_OffsetTable;
}
/** Compute an offset from the beginning of the buffer for a pixel
* at the specified index. The index is not checked as to whether it
* is inside the current buffer, so the computed offset could
* conceivably be outside the buffer. If bounds checking is needed,
* one can call ImageRegion::IsInside(ind) on the BufferedRegion
* prior to calling ComputeOffset. */
inline OffsetValueType
ComputeOffset(const IndexType & ind) const
{
OffsetValueType offset = 0;
ImageHelper<VImageDimension, VImageDimension>::ComputeOffset(
this->GetBufferedRegion().GetIndex(), ind, m_OffsetTable, offset);
return offset;
/* NON TEMPLATE_META_PROGRAMMING_LOOP_UNROLLING data version
* Leaving here for documentation purposes
* OffsetValueType ComputeOffset(const IndexType & ind) const
* {
* // need to add bounds checking for the region/buffer?
* OffsetValueType offset = 0;
* const IndexType & bufferedRegionIndex = this->GetBufferedRegion().GetIndex();
* // data is arranged as [][][][slice][row][col]
* // with Index[0] = col, Index[1] = row, Index[2] = slice
* for ( int i = VImageDimension - 1; i > 0; i-- )
* {
* offset += ( ind[i] - bufferedRegionIndex[i] ) * m_OffsetTable[i];
* }
* offset += ( ind[0] - bufferedRegionIndex[0] );
* return offset;
* }
*/
}
/** Compute the index of the pixel at a specified offset from the
* beginning of the buffered region. Bounds checking is not
* performed. Thus, the computed index could be outside the
* BufferedRegion. To ensure a valid index, the parameter "offset"
* should be between 0 and the number of pixels in the
* BufferedRegion (the latter can be found using
* ImageRegion::GetNumberOfPixels()). */
inline IndexType
ComputeIndex(OffsetValueType offset) const
{
IndexType index;
const IndexType & bufferedRegionIndex = this->GetBufferedRegion().GetIndex();
ImageHelper<VImageDimension, VImageDimension>::ComputeIndex(bufferedRegionIndex, offset, m_OffsetTable, index);
return index;
/* NON TEMPLATE_META_PROGRAMMING_LOOP_UNROLLING data version
* Leaving here for documentation purposes
* IndexType ComputeIndex(OffsetValueType offset) const
* {
* IndexType index;
* const IndexType & bufferedRegionIndex = this->GetBufferedRegion().GetIndex();
* for ( int i = VImageDimension - 1; i > 0; i-- )
* {
* index[i] = static_cast< IndexValueType >( offset / m_OffsetTable[i] );
* offset -= ( index[i] * m_OffsetTable[i] );
* index[i] += bufferedRegionIndex[i];
* }
* index[0] = bufferedRegionIndex[0] + static_cast< IndexValueType >( offset );
* return index;
* }
*/
}
/** Set the spacing (size of a pixel) of the image. The spacing is
* the geometric distance between image samples along each
* dimension. It is stored internally as double, but may be set from
* float. These methods also pre-compute the Index to Physical point
* transforms of the image.
* \sa GetSpacing() */
virtual void
SetSpacing(const SpacingType & spacing);
virtual void
SetSpacing(const double spacing[VImageDimension]);
virtual void
SetSpacing(const float spacing[VImageDimension]);
/** Returns the index (discrete) of a voxel from a physical point.
* Floating point index results are rounded to integers
* \note This specific overload does not figure out whether or not
* the returned index is inside the image. Of course, the user can
* still test this afterwards by calling ImageRegion::IsInside(index):
\code
auto index = image->TransformPhysicalPointToIndex(point);
if (image->GetLargestPossibleRegion().IsInside(index)) // Et cetera...
\endcode
* Which is equivalent to the following code, which calls the other overload:
\code
IndexType index;
if (image->TransformPhysicalPointToIndex(point, index)) // Et cetera...
\endcode
* \sa Transform */
template <typename TCoordRep>
[[nodiscard]] IndexType
TransformPhysicalPointToIndex(const Point<TCoordRep, VImageDimension> & point) const
{
IndexType index;
for (unsigned int i = 0; i < VImageDimension; ++i)
{
TCoordRep sum{};
for (unsigned int j = 0; j < VImageDimension; ++j)
{
sum += this->m_PhysicalPointToIndex[i][j] * (point[j] - this->m_Origin[j]);
}
index[i] = Math::RoundHalfIntegerUp<IndexValueType>(sum);
}
return index;
}
/** Get the index (discrete) of a voxel from a physical point.
* Floating point index results are rounded to integers
* Returns true if the resulting index is within the image, false otherwise
*
* \note For performance reasons, if you do not need to use the `bool` return value, please call the corresponding
* overload instead, which has only one parameter (the point), and returns the index.
*
* \sa Transform */
template <typename TCoordRep>
ITK_NODISCARD("Call the overload which has the point as the only parameter and returns the index")
bool TransformPhysicalPointToIndex(const Point<TCoordRep, VImageDimension> & point, IndexType & index) const
{
index = TransformPhysicalPointToIndex(point);
// Now, check to see if the index is within allowed bounds
const bool isInside = this->GetLargestPossibleRegion().IsInside(index);
return isInside;
}
/** \brief Returns the continuous index from a physical point
* \note This specific overload does not figure out whether or not
* the returned index is inside the image. Of course, the user can
* still test this afterwards by calling ImageRegion::IsInside(index):
\code
auto index = image->TransformPhysicalPointToContinuousIndex<double>(point);
if (image->GetLargestPossibleRegion().IsInside(index)) // Et cetera...
\endcode
* Which is equivalent to the following code, which calls the other overload:
\code
itk::ContinuousIndex<double, ImageDimension> index;
if (image->TransformPhysicalPointToContinuousIndex(point, index)) // Et cetera...
\endcode
* \sa Transform */
template <typename TIndexRep, typename TCoordRep>
[[nodiscard]] ContinuousIndex<TIndexRep, VImageDimension>
TransformPhysicalPointToContinuousIndex(const Point<TCoordRep, VImageDimension> & point) const
{
ContinuousIndex<TIndexRep, VImageDimension> index;
Vector<SpacePrecisionType, VImageDimension> cvector;
for (unsigned int k = 0; k < VImageDimension; ++k)
{
cvector[k] = point[k] - this->m_Origin[k];
}
cvector = m_PhysicalPointToIndex * cvector;
for (unsigned int i = 0; i < VImageDimension; ++i)
{
index[i] = static_cast<TIndexRep>(cvector[i]);
}
return index;
}
/** \brief Get the continuous index from a physical point
*
* Returns true if the resulting index is within the image, false otherwise.
*
* \note For performance reasons, if you do not need to use the `bool` return value, please call the corresponding
* overload instead, which has only one parameter (the point), and returns the continuous index.
*
* \sa Transform */
template <typename TCoordRep, typename TIndexRep>
ITK_NODISCARD("Call the overload which has the point as the only parameter and returns the index")
bool TransformPhysicalPointToContinuousIndex(const Point<TCoordRep, VImageDimension> & point,
ContinuousIndex<TIndexRep, VImageDimension> & index) const
{
index = TransformPhysicalPointToContinuousIndex<TIndexRep>(point);
// Now, check to see if the index is within allowed bounds
const bool isInside = this->GetLargestPossibleRegion().IsInside(index);
return isInside;
}
/** Get a physical point (in the space which
* the origin and spacing information comes from)
* from a continuous index (in the index space)
* \sa Transform */
template <typename TCoordRep, typename TIndexRep>
void
TransformContinuousIndexToPhysicalPoint(const ContinuousIndex<TIndexRep, VImageDimension> & index,
Point<TCoordRep, VImageDimension> & point) const
{
for (unsigned int r = 0; r < VImageDimension; ++r)
{
TCoordRep sum{};
for (unsigned int c = 0; c < VImageDimension; ++c)
{
sum += this->m_IndexToPhysicalPoint(r, c) * index[c];
}
point[r] = sum + this->m_Origin[r];
}
}
/** Returns a physical point (in the space which
* the origin and spacing information comes from)
* from a continuous index (in the index space)
* \sa Transform */
template <typename TCoordRep, typename TIndexRep>
[[nodiscard]] Point<TCoordRep, VImageDimension>
TransformContinuousIndexToPhysicalPoint(const ContinuousIndex<TIndexRep, VImageDimension> & index) const
{
Point<TCoordRep, VImageDimension> point;
TransformContinuousIndexToPhysicalPoint(index, point);
return point;
}
/** Get a physical point (in the space which
* the origin and spacing information comes from)
* from a discrete index (in the index space)
*
* \sa Transform */
template <typename TCoordRep>
void
TransformIndexToPhysicalPoint(const IndexType & index, Point<TCoordRep, VImageDimension> & point) const
{
for (unsigned int i = 0; i < VImageDimension; ++i)
{
point[i] = this->m_Origin[i];
for (unsigned int j = 0; j < VImageDimension; ++j)
{
point[i] += m_IndexToPhysicalPoint[i][j] * index[j];
}
}
}
/** Returns a physical point (in the space which
* the origin and spacing information comes from)
* from a discrete index (in the index space)
*
* \sa Transform */
template <typename TCoordRep>
[[nodiscard]] Point<TCoordRep, VImageDimension>
TransformIndexToPhysicalPoint(const IndexType & index) const
{
Point<TCoordRep, VImageDimension> point;
TransformIndexToPhysicalPoint(index, point);
return point;
}
/** Take a vector or covariant vector that has been computed in the
* coordinate system parallel to the image grid and rotate it by the
* direction cosines in order to get it in terms of the coordinate system of
* the image acquisition device. This implementation in the Image
* multiply the array (vector or covariant vector) by the matrix of Direction
* Cosines. The arguments of the method are of type FixedArray to make
* possible to use this method with both Vector and CovariantVector.
* The Method is implemented differently in the itk::Image.
*
* The inputGradient and the outputGradient must not refer to the
* same data.
*
* \sa Image
*/
template <typename TCoordRep>
void
TransformLocalVectorToPhysicalVector(const FixedArray<TCoordRep, VImageDimension> & inputGradient,
FixedArray<TCoordRep, VImageDimension> & outputGradient) const
{
const DirectionType & direction = this->GetDirection();
itkAssertInDebugAndIgnoreInReleaseMacro(inputGradient.GetDataPointer() != outputGradient.GetDataPointer());
for (unsigned int i = 0; i < VImageDimension; ++i)
{
using CoordSumType = typename NumericTraits<TCoordRep>::AccumulateType;
CoordSumType sum{};
for (unsigned int j = 0; j < VImageDimension; ++j)
{
sum += direction[i][j] * inputGradient[j];
}
outputGradient[i] = static_cast<TCoordRep>(sum);
}
}
/** Take a vector or covariant vector that has been computed in the
* coordinate system parallel to the image grid and rotate it by the
* direction cosines in order to get it in terms of the coordinate system of
* the image acquisition device. Returns the resulting gradient.
* \sa Image
*/
template <typename TVector>
[[nodiscard]] TVector
TransformLocalVectorToPhysicalVector(const TVector & inputGradient) const
{
TVector outputGradient;
TransformLocalVectorToPhysicalVector(inputGradient, outputGradient);
return outputGradient;
}
/** Take a vector or covariant vector that has been computed in terms of the
* coordinate system of the image acquisition device, and rotate it by the
* inverse direction cosines in order to get it in the coordinate system
* parallel to the image grid. This implementation in the Image
* multiply the array (vector or covariant vector) by the inverse of Direction
* Cosines. The arguments of the method are of type FixedArray to make
* possible to use this method with both Vector and CovariantVector.
*
* The inputGradient and the outputGradient must not refer to the
* same data.
*
*/
template <typename TCoordRep>
void
TransformPhysicalVectorToLocalVector(const FixedArray<TCoordRep, VImageDimension> & inputGradient,
FixedArray<TCoordRep, VImageDimension> & outputGradient) const
{
const DirectionType & inverseDirection = this->GetInverseDirection();
itkAssertInDebugAndIgnoreInReleaseMacro(inputGradient.GetDataPointer() != outputGradient.GetDataPointer());
for (unsigned int i = 0; i < VImageDimension; ++i)
{
using CoordSumType = typename NumericTraits<TCoordRep>::AccumulateType;
CoordSumType sum{};
for (unsigned int j = 0; j < VImageDimension; ++j)
{
sum += inverseDirection[i][j] * inputGradient[j];
}
outputGradient[i] = static_cast<TCoordRep>(sum);
}
}
/** Take a vector or covariant vector that has been computed in terms of the
* coordinate system of the image acquisition device, and rotate it by the
* inverse direction cosines in order to get it in the coordinate system
* parallel to the image grid. Returns the result.
*
*/
template <typename TVector>
[[nodiscard]] TVector
TransformPhysicalVectorToLocalVector(const TVector & inputGradient) const
{
TVector outputGradient;
TransformPhysicalVectorToLocalVector(inputGradient, outputGradient);
return outputGradient;
}
/** Copy information from the specified data set. This method is
* part of the pipeline execution model. By default, a ProcessObject
* will copy meta-data from the first input to all of its
* outputs. See ProcessObject::GenerateOutputInformation(). Each
* subclass of DataObject is responsible for being able to copy
* whatever meta-data it needs from from another DataObject.
* ImageBase has more meta-data than its DataObject. Thus, it must
* provide its own version of CopyInformation() in order to copy the
* LargestPossibleRegion from the input parameter. */
void
CopyInformation(const DataObject * data) override;
/** Graft the data and information from one image to another. This
* is a convenience method to setup a second image with all the meta
* information of another image and use the same pixel
* container. Note that this method is different than just using two
* SmartPointers to the same image since separate DataObjects are
* still maintained. This method is similar to
* ImageSource::GraftOutput(). The implementation in ImageBase
* simply calls CopyInformation() and copies the region ivars.
* Subclasses of ImageBase are responsible for copying the pixel
* container. */
virtual void
Graft(const Self * image);
/** Update the information for this DataObject so that it can be used
* as an output of a ProcessObject. This method is used the pipeline
* mechanism to propagate information and initialize the meta data
* associated with a DataObject. This method calls its source's
* ProcessObject::UpdateOutputInformation() which determines modified
* times, LargestPossibleRegions, and any extra meta data like spacing,
* origin, etc. */
void
UpdateOutputInformation() override;
/** UpdateOutputData() is part of the pipeline infrastructure to
* communicate between ProcessObjects and DataObjects. The method of
* the superclass is overridden to check if the requested image
* region has zero pixels. This is needed so that filters can set an
* input's requested region to zero, to indicate that it does not
* need to be updated or executed.
*/
void
UpdateOutputData() override;
/** Set the RequestedRegion to the LargestPossibleRegion. This
* forces a filter to produce all of the output in one execution
* (i.e. not streaming) on the next call to Update(). */
void
SetRequestedRegionToLargestPossibleRegion() override;
/** Determine whether the RequestedRegion is outside of the
* BufferedRegion. This method returns true if the RequestedRegion
* is outside the BufferedRegion (true if at least one pixel is
* outside). This is used by the pipeline mechanism to determine
* whether a filter needs to re-execute in order to satisfy the
* current request. If the current RequestedRegion is already
* inside the BufferedRegion from the previous execution (and the
* current filter is up to date), then a given filter does not need
* to re-execute */
bool
RequestedRegionIsOutsideOfTheBufferedRegion() override;
/** Verify that the RequestedRegion is within the
* LargestPossibleRegion. If the RequestedRegion is not within the
* LargestPossibleRegion, then the filter cannot possible satisfy
* the request. This method returns true if the request can be
* satisfied and returns fails if the request cannot. This method is
* used by PropagateRequestedRegion(). PropagateRequestedRegion()
* throws a InvalidRequestedRegionError exception is the requested
* region is not within the LargestPossibleRegion. */
bool
VerifyRequestedRegion() override;
/** Checks whether the images' pixels with the same index occupy the same physical space.
* Compares the origin, spacing, and direction for equality within provided tolerances.
* There is no check for valid regions in between the images. */
bool
IsCongruentImageGeometry(const ImageBase * otherImage, double coordinateTolerance, double directionTolerance) const;
/** Check whether this image and the other image have the same grid in physical space.
* Compares largest possible regions for equality, and the origin, spacing,
* and direction cosines for equality within provided tolerances.
* See also: ImageToImageFilter, namely:
* https://github.com/InsightSoftwareConsortium/ITK/blob/v5.3.0/Modules/Core/Common/include/itkImageToImageFilter.h#L78-L92
* https://github.com/InsightSoftwareConsortium/ITK/blob/v5.3.0/Modules/Core/Common/src/itkImageToImageFilterCommon.cxx#L26-L27
*/
bool
IsSameImageGeometryAs(const ImageBase * otherImage,
double coordinateTolerance = DefaultImageCoordinateTolerance,
double directionTolerance = DefaultImageDirectionTolerance) const;
/** INTERNAL This method is used internally by filters to copy meta-data from
* the output to the input. Users should not have a need to use this method.
*
* Filters that override the ProcessObject's GenerateOutputInformation()
* should generally have the following line if they want to propagate meta-
* data for both Image and VectorImage
\code
outputImage->SetNumberOfComponentsPerPixel(
inputImage->GetNumberOfComponentsPerPixel() )
\endcode
*
* \sa ImageBase, VectorImage
*
* Returns/Sets the number of components in the image. Note that in the
* ImageBase implementation, this always returns 1. Image returns the
* # returned from NumericTraits for the pixel type, and VectorImage
* returns the vector length set by the user.
*/
virtual unsigned int
GetNumberOfComponentsPerPixel() const;
virtual void
SetNumberOfComponentsPerPixel(unsigned int);
protected:
ImageBase() = default;
~ImageBase() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Calculate the offsets needed to move from one pixel to the next
* along a row, column, slice, volume, etc. These offsets are based
* on the size of the BufferedRegion. This should be called after
* the BufferedRegion is set. */
void
ComputeOffsetTable();
/** Compute helper matrices used to transform Index coordinates to
* PhysicalPoint coordinates and back. This method is virtual and will be
* overloaded in derived classes in order to provide backward compatibility
* behavior in classes that did not used to take image orientation into
* account. */
virtual void
ComputeIndexToPhysicalPointMatrices();
protected:
/** Origin, spacing, and direction in physical coordinates. This variables are
* protected for efficiency. They are referenced frequently by
* inner loop calculations. */
SpacingType m_Spacing{ MakeFilled<SpacingType>(1.0) };
PointType m_Origin{};
DirectionType m_Direction{ DirectionType::GetIdentity() };
DirectionType m_InverseDirection{ DirectionType::GetIdentity() };
/** Matrices intended to help with the conversion of Index coordinates
* to PhysicalPoint coordinates */
DirectionType m_IndexToPhysicalPoint{ DirectionType::GetIdentity() };
DirectionType m_PhysicalPointToIndex{ DirectionType::GetIdentity() };
/** Restores the buffered region to its default state
* This method does not call Modify because Initialization is
* called by ReleaseData and can not modify the MTime
* \sa ReleaseData, Initialize, SetBufferedRegion */
virtual void
InitializeBufferedRegion();
/** Directly computes an offset from the beginning of the buffer for a pixel
* at the specified index.
* The index is not checked as to whether it is inside the current buffer, so
* the computed offset could conceivably be outside the buffer. If bounds
* checking is needed, one can call \c ImageRegion::IsInside(ind) on the
* BufferedRegion prior to calling ComputeOffset.
* \warning unlike \c ComputeOffset(), this version does not incur a
* virtual call. It's meant to be used only for \c itk::Image<>, \c
* itk::VectorImage<> and \c itk::SpecialCoordinatesImage<>.
*/
OffsetValueType
FastComputeOffset(const IndexType & ind) const
{
OffsetValueType offset = 0;
ImageHelper<VImageDimension, VImageDimension>::ComputeOffset(
Self::GetBufferedRegion().GetIndex(), ind, m_OffsetTable, offset);
return offset;
}
/** Directly computes the index of the pixel at a specified offset from the
* beginning of the buffered region.
* Bounds checking is not performed. Thus, the computed index could be
* outside the BufferedRegion. To ensure a valid index, the parameter
* \c offset should be between 0 and the number of pixels in the
* BufferedRegion (the latter can be found using
* \c ImageRegion::GetNumberOfPixels()).
* \warning unlike \c ComputeOffset(), this version does not incur a
* virtual call. It's meant to be used only for \c itk::Image<>, \c
* itk::VectorImage<> and \c itk::SpecialCoordinatesImage<>.
*/
IndexType
FastComputeIndex(OffsetValueType offset) const
{
IndexType index;
const IndexType & bufferedRegionIndex = Self::GetBufferedRegion().GetIndex();
ImageHelper<VImageDimension, VImageDimension>::ComputeIndex(bufferedRegionIndex, offset, m_OffsetTable, index);
return index;
}
void
Graft(const DataObject * data) override;
private:
OffsetValueType m_OffsetTable[VImageDimension + 1]{};
RegionType m_LargestPossibleRegion{};
RegionType m_RequestedRegion{};
RegionType m_BufferedRegion{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkImageBase.hxx"
#endif
#endif
|