1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkContourDirectedMeanDistanceImageFilter_h
#define itkContourDirectedMeanDistanceImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkNumericTraits.h"
#include "itkArray.h"
#include "itkImage.h"
namespace itk
{
/**
* \class ContourDirectedMeanDistanceImageFilter
* \brief Computes the directed Mean distance between the boundaries of
* non-zero pixel regions of two images.
*
* ContourDirectedMeanDistanceImageFilter computes the distance between the set
* non-zero pixels of two images using the following formula:
* \f[ h(A,B) = \mathrm{mean}_{a \in A} \min_{b \in B} \| a - b\| \f]
* where \f$A\f$ and \f$B\f$ are respectively the set of non-zero pixels
* in the first and second input images. It identifies the point \f$ a \in A \f$
* that is farthest from any point of \f$B\f$ and measures the distance from \f$a\f$
* to the nearest neighbor in \f$B\f$. Note that this function is not
* is not symmetric and hence is not a true distance.
*
* In particular, this filter uses the SignedMaurerDistanceMapImageFilter
* inside to compute distance map from all non-zero pixels in the second image.
* It then computes the mean distance (in pixels) within the boundary pixels
* of non-zero regions in the first image.
*
* This filter requires the largest possible region of the first image and the
* same corresponding region in the second image. It behaves as filter with
* two input and one output. Thus it can be inserted in a pipeline with other
* filters. The filter passes the first input through unmodified.
*
* This filter is templated over the two input image type. It assume
* both image have the same number of dimensions.
*
* \sa SignedMaurerDistanceMapImageFilter
*
* \ingroup MultiThreaded
*
* \author Teo Popa, ISIS Center, Georgetown University
*
* \ingroup ITKDistanceMap
*/
template <typename TInputImage1, typename TInputImage2>
class ITK_TEMPLATE_EXPORT ContourDirectedMeanDistanceImageFilter : public ImageToImageFilter<TInputImage1, TInputImage1>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ContourDirectedMeanDistanceImageFilter);
/** Standard Self type alias */
using Self = ContourDirectedMeanDistanceImageFilter;
using Superclass = ImageToImageFilter<TInputImage1, TInputImage1>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ContourDirectedMeanDistanceImageFilter);
/** Image related type alias. */
using InputImage1Type = TInputImage1;
using InputImage2Type = TInputImage2;
using InputImage1Pointer = typename TInputImage1::Pointer;
using InputImage2Pointer = typename TInputImage2::Pointer;
using InputImage1ConstPointer = typename TInputImage1::ConstPointer;
using InputImage2ConstPointer = typename TInputImage2::ConstPointer;
using RegionType = typename TInputImage1::RegionType;
using SizeType = typename TInputImage1::SizeType;
using IndexType = typename TInputImage1::IndexType;
using InputImage1PixelType = typename TInputImage1::PixelType;
using InputImage2PixelType = typename TInputImage2::PixelType;
/** Image related type alias. */
static constexpr unsigned int ImageDimension = TInputImage1::ImageDimension;
/** Type to use form computations. */
using RealType = typename NumericTraits<InputImage1PixelType>::RealType;
/** Set the first input. */
void
SetInput1(const InputImage1Type * image);
/** Set the second input. */
void
SetInput2(const InputImage2Type * image);
/** Get the first input. */
const InputImage1Type *
GetInput1();
/** Get the second input. */
const InputImage2Type *
GetInput2();
/** Return the computed directed Mean distance. */
itkGetConstMacro(ContourDirectedMeanDistance, RealType);
/** Set/Get if image spacing should be used in computing distances. */
itkSetMacro(UseImageSpacing, bool);
itkGetConstMacro(UseImageSpacing, bool);
itkBooleanMacro(UseImageSpacing);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<InputImage1PixelType>));
// End concept checking
#endif
protected:
ContourDirectedMeanDistanceImageFilter();
~ContourDirectedMeanDistanceImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Pass the input through unmodified. Do this by Grafting in the
AllocateOutputs method. */
void
AllocateOutputs() override;
/** Initialize some accumulators before the threads run. */
void
BeforeThreadedGenerateData() override;
/** Do final mean and variance computation from data accumulated in threads.
*/
void
AfterThreadedGenerateData() override;
/** Multi-thread version GenerateData. */
void
ThreadedGenerateData(const RegionType & outputRegionForThread, ThreadIdType threadId) override;
void
DynamicThreadedGenerateData(const RegionType &) override
{
itkExceptionMacro("This class requires threadId so it must use classic multi-threading model");
}
// Override since the filter needs all the data for the algorithm
void
GenerateInputRequestedRegion() override;
// Override since the filter produces all of its output
void
EnlargeOutputRequestedRegion(DataObject * data) override;
private:
using DistanceMapType = Image<RealType, Self::ImageDimension>;
typename DistanceMapType::Pointer m_DistanceMap{};
Array<RealType> m_MeanDistance{};
Array<IdentifierType> m_Count{};
RealType m_ContourDirectedMeanDistance{};
bool m_UseImageSpacing{ true };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkContourDirectedMeanDistanceImageFilter.hxx"
#endif
#endif
|