1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkContourMeanDistanceImageFilter_h
#define itkContourMeanDistanceImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkNumericTraits.h"
namespace itk
{
/**
* \class ContourMeanDistanceImageFilter
* \brief Computes the Mean distance between the boundaries of
* non-zero regions of two images.
*
* ContourMeanDistanceImageFilter computes the distance between the
* set non-zero pixels of two images using the following formula:
* \f[ H(A,B) = \max(h(A,B),h(B,A)) \f]
* where
* \f[ h(A,B) = \mathrm{mean}_{a \in A} \min_{b \in B} \| a - b\| \f]
* is the directed mean distance
* and \f$A\f$ and \f$B\f$ are respectively the set of non-zero pixels
* in the first and second input images.
*
* In particular, this filter uses the ContourDirectedMeanImageFilter
* inside to compute the two directed distances and then select the
* largest of the two.
*
* The Mean distance measures the degree of mismatch between two sets
* and behaves like a metric over the set of all closed bounded sets -
* with properties of identity, symmetry and triangle inequality.
*
* This filter requires the largest possible region of the first image
* and the same corresponding region in the second image.
* It behaves as filter with
* two input and one output. Thus it can be inserted in a pipeline with
* other filters. The filter passes the first input through unmodified.
*
* This filter is templated over the two input image type. It assume
* both image have the same number of dimensions.
*
* \sa ContourDirectedMeanDistanceImageFilter
*
* \author Teo Popa, ISIS Center, Georgetown University
*
* \ingroup MultiThreaded
* \ingroup ITKDistanceMap
*
* \sphinx
* \sphinxexample{Filtering/DistanceMap/MeanDistanceBetweenAllPointsOnTwoCurves,Mean Distance Between All Points On Two
Curves}
* \endsphinx
*/
template <typename TInputImage1, typename TInputImage2>
class ITK_TEMPLATE_EXPORT ContourMeanDistanceImageFilter : public ImageToImageFilter<TInputImage1, TInputImage1>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ContourMeanDistanceImageFilter);
/** Standard Self type alias */
using Self = ContourMeanDistanceImageFilter;
using Superclass = ImageToImageFilter<TInputImage1, TInputImage1>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ContourMeanDistanceImageFilter);
/** Image related type alias. */
using InputImage1Type = TInputImage1;
using InputImage2Type = TInputImage2;
using InputImage1Pointer = typename TInputImage1::Pointer;
using InputImage2Pointer = typename TInputImage2::Pointer;
using InputImage1ConstPointer = typename TInputImage1::ConstPointer;
using InputImage2ConstPointer = typename TInputImage2::ConstPointer;
using RegionType = typename TInputImage1::RegionType;
using SizeType = typename TInputImage1::SizeType;
using IndexType = typename TInputImage1::IndexType;
using InputImage1PixelType = typename TInputImage1::PixelType;
using InputImage2PixelType = typename TInputImage2::PixelType;
/** Image related type alias. */
static constexpr unsigned int ImageDimension = TInputImage1::ImageDimension;
/** Type to use form computations. */
using RealType = typename NumericTraits<InputImage1PixelType>::RealType;
/** Set the first input. */
void
SetInput1(const InputImage1Type * image);
/** Set the second input. */
void
SetInput2(const InputImage2Type * image);
/** Get the first input. */
const InputImage1Type *
GetInput1();
/** Get the second input. */
const InputImage2Type *
GetInput2();
/** Return the computed Mean distance. */
itkGetConstMacro(MeanDistance, RealType);
/** Set if image spacing should be used in computing distances. */
itkSetMacro(UseImageSpacing, bool);
itkGetConstMacro(UseImageSpacing, bool);
itkBooleanMacro(UseImageSpacing);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<InputImage1PixelType>));
// End concept checking
#endif
protected:
ContourMeanDistanceImageFilter();
~ContourMeanDistanceImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** GenerateData. */
void
GenerateData() override;
// Override since the filter needs all the data for the algorithm
void
GenerateInputRequestedRegion() override;
// Override since the filter produces all of its output
void
EnlargeOutputRequestedRegion(DataObject * data) override;
private:
RealType m_MeanDistance{};
bool m_UseImageSpacing{ true };
}; // end of class
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkContourMeanDistanceImageFilter.hxx"
#endif
#endif
|