1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDanielssonDistanceMapImageFilter_h
#define itkDanielssonDistanceMapImageFilter_h
#include "itkImageToImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
namespace itk
{
/**
* \class DanielssonDistanceMapImageFilter
* \brief This filter computes the distance map of the input image
* as an approximation with pixel accuracy to the Euclidean distance.
*
* \tparam TInputImage Input Image Type
* \tparam TOutputImage Output Image Type
* \tparam TVoronoiImage Voronoi Image Type. Note the default value is TInputImage.
*
* The input is assumed to contain numeric codes defining objects.
* The filter will produce as output the following images:
*
* \li A <b>Voronoi partition</b> using the same numeric codes as the input.
* \li A <b>distance map</b> with the approximation to the euclidean distance.
* from a particular pixel to the nearest object to this pixel
* in the input image.
* \li A <b>vector map</b> containing the component of the vector relating
* the current pixel with the closest point of the closest object
* to this pixel. Given that the components of the distance are
* computed in "pixels", the vector is represented by an
* itk::Offset. That is, physical coordinates are not used.
*
* This filter is N-dimensional and known to be efficient
* in computational time. The algorithm is the N-dimensional version
* of the 4SED algorithm given for two dimensions in:
*
* Danielsson, Per-Erik. Euclidean Distance Mapping. Computer
* Graphics and Image Processing 14, 227-248 (1980).
*
* \ingroup ImageFeatureExtraction
* \ingroup ITKDistanceMap
*/
template <typename TInputImage, typename TOutputImage, typename TVoronoiImage = TInputImage>
class ITK_TEMPLATE_EXPORT DanielssonDistanceMapImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(DanielssonDistanceMapImageFilter);
/** Standard class type aliases. */
using Self = DanielssonDistanceMapImageFilter;
using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
using DataObjectPointer = DataObject::Pointer;
/** Method for creation through the object factory */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(DanielssonDistanceMapImageFilter);
/** Type for input image. */
using InputImageType = TInputImage;
/** Type for input image pixel.*/
using InputPixelType = typename InputImageType::PixelType;
/** Type for the region of the input image. */
using RegionType = typename InputImageType::RegionType;
/** Type for the index of the input image. */
using IndexType = typename RegionType::IndexType;
/** Type for the index of the input image. */
using OffsetType = typename InputImageType::OffsetType;
/** Type for the spacing of the input image. */
using SpacingType = typename InputImageType::SpacingType;
using SpacingValueType = typename InputImageType::SpacingValueType;
/** Type for the size of the input image. */
using SizeType = typename RegionType::SizeType;
/** Type for one size element of the input image.*/
using SizeValueType = typename SizeType::SizeValueType;
/** Type for two of the three output images: the VoronoiMap and the
* DistanceMap. */
using OutputImageType = TOutputImage;
/** Type for output image pixel.*/
using OutputPixelType = typename OutputImageType::PixelType;
using VoronoiImageType = TVoronoiImage;
using VoronoiImagePointer = typename VoronoiImageType::Pointer;
using VoronoiPixelType = typename VoronoiImageType::PixelType;
/** The dimension of the input and output images. */
static constexpr unsigned int InputImageDimension = InputImageType::ImageDimension;
/** Pointer Type for the vector distance image */
using VectorImageType = Image<OffsetType, Self::InputImageDimension>;
/** Pointer Type for input image. */
using InputImagePointer = typename InputImageType::ConstPointer;
/** Pointer Type for the output image. */
using OutputImagePointer = typename OutputImageType::Pointer;
/** Pointer Type for the vector distance image. */
using VectorImagePointer = typename VectorImageType::Pointer;
/** Set/Get if the distance should be squared. */
itkSetMacro(SquaredDistance, bool);
itkGetConstReferenceMacro(SquaredDistance, bool);
itkBooleanMacro(SquaredDistance);
/** Set/Get if the input is binary. If this variable is set, each
* nonzero pixel in the input image will be given a unique numeric
* code to be used by the Voronoi partition. If the image is binary
* but you are not interested in the Voronoi regions of the
* different nonzero pixels, then you need not set this. */
itkSetMacro(InputIsBinary, bool);
itkGetConstReferenceMacro(InputIsBinary, bool);
itkBooleanMacro(InputIsBinary);
/** Set/Get if image spacing should be used in computing distances. */
itkSetMacro(UseImageSpacing, bool);
itkGetConstReferenceMacro(UseImageSpacing, bool);
itkBooleanMacro(UseImageSpacing);
/** Get Voronoi Map
* This map shows for each pixel what object is closest to it.
* Each object should be labeled by a number (larger than 0),
* so the map has a value for each pixel corresponding to the label
* of the closest object. */
VoronoiImageType *
GetVoronoiMap();
/** Get Distance map image. The distance map is shown as a gray
* value image depending on the pixel type of the output image.
* Regarding the source image, background should be dark (gray value
* = 0) and object should have a gray value larger than 0. The
* minimal distance is calculated on the object frontier, and the
* output image gives for each pixel its minimal distance from the
* object (if there is more than one object the closest object is
* considered). */
OutputImageType *
GetDistanceMap();
/** Get vector field of distances. */
VectorImageType *
GetVectorDistanceMap();
/** Standard itk::ProcessObject subclass method. */
using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
using Superclass::MakeOutput;
DataObjectPointer
MakeOutput(DataObjectPointerArraySizeType idx) override;
#ifdef ITK_USE_CONCEPT_CHECKING
static constexpr unsigned int OutputImageDimension = TOutputImage::ImageDimension;
static constexpr unsigned int VoronoiImageDimension = TVoronoiImage::ImageDimension;
// Begin concept checking
itkConceptMacro(InputOutputSameDimensionCheck, (Concept::SameDimension<InputImageDimension, OutputImageDimension>));
itkConceptMacro(InputVoronoiSameDimensionCheck, (Concept::SameDimension<InputImageDimension, VoronoiImageDimension>));
itkConceptMacro(DoubleConvertibleToOutputCheck, (Concept::Convertible<double, OutputPixelType>));
itkConceptMacro(InputConvertibleToOutputCheck, (Concept::Convertible<InputPixelType, OutputPixelType>));
// End concept checking
#endif
protected:
DanielssonDistanceMapImageFilter();
~DanielssonDistanceMapImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
/** Compute Danielsson distance map and Voronoi Map. */
void
GenerateData() override;
/** Prepare data. */
void
PrepareData();
/** Compute Voronoi Map. */
void
ComputeVoronoiMap();
/** Update distance map locally. Used by GenerateData(). */
void
UpdateLocalDistance(VectorImageType *, const IndexType &, const OffsetType &);
private:
bool m_SquaredDistance{};
bool m_InputIsBinary{};
bool m_UseImageSpacing{ true };
SpacingType m_InputSpacingCache{};
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkDanielssonDistanceMapImageFilter.hxx"
#endif
#endif
|