File: itkSignedDanielssonDistanceMapImageFilter.h

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (246 lines) | stat: -rw-r--r-- 8,732 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkSignedDanielssonDistanceMapImageFilter_h
#define itkSignedDanielssonDistanceMapImageFilter_h

#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkSubtractImageFilter.h"

// Simple functor to invert an image for Outside Danielsson distance map
namespace itk
{
namespace Functor
{
template <typename InputPixelType>
class ITK_TEMPLATE_EXPORT InvertIntensityFunctor
{
public:
  InputPixelType
  operator()(InputPixelType input) const
  {
    if (input)
    {
      return InputPixelType{};
    }
    else
    {
      return NumericTraits<InputPixelType>::OneValue();
    }
  }
};
} // namespace Functor
} // namespace itk

namespace itk
{
/**
 * \class SignedDanielssonDistanceMapImageFilter
 * \brief This filter computes the signed distance map of the input
 * image as an approximation with pixel accuracy to the Euclidean
 * distance.
 *
 * This class is parameterized over the type of the input image
 * and the type of the output image.
 *
 * For purposes of evaluating the signed distance map, the input is assumed
 * to be binary composed of pixels with value 0 and non-zero.
 *
 * The inside is considered as having negative distances. Outside is treated
 * as having positive distances. To change the convention,
 * use the InsideIsPositive(bool) function.
 *
 * As a convention, the distance is evaluated from the boundary of the ON pixels.
 *
 * The filter returns
 * - A signed distance map with the approximation to the euclidean distance.
 * - A voronoi partition. (See itkDanielssonDistanceMapImageFilter)
 * - A vector map containing the component of the vector relating
 *   the current pixel with the closest point of the closest object
 *   to this pixel. Given that the components of the distance are
 *   computed in "pixels", the vector is represented by an
 *   itk::Offset.  That is, physical coordinates are not used.
 *   (See itkDanielssonDistanceMapImageFilter)
 *
 * This filter internally uses the DanielssonDistanceMap filter.
 * This filter is N-dimensional.
 *
 * \sa itkDanielssonDistanceMapImageFilter
 *
 * \ingroup ImageFeatureExtraction
 *
 * \ingroup ITKDistanceMap
 *
 * \sphinx
 * \sphinxexample{Filtering/DistanceMap/SignedDistanceMapOfBinary,Signed Distance Map Of Binary Image}
 * \endsphinx
 */

template <typename TInputImage, typename TOutputImage, typename TVoronoiImage = TInputImage>
class ITK_TEMPLATE_EXPORT SignedDanielssonDistanceMapImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(SignedDanielssonDistanceMapImageFilter);

  /** Standard class type aliases. */
  using Self = SignedDanielssonDistanceMapImageFilter;
  using Superclass = ImageToImageFilter<TInputImage, TOutputImage>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory */
  itkNewMacro(Self);

  /** \see LightObject::GetNameOfClass() */
  itkOverrideGetNameOfClassMacro(SignedDanielssonDistanceMapImageFilter);

  /** Type for input image. */
  using InputImageType = TInputImage;

  /** Type for two of the three output images: the VoronoiMap and the
   * DistanceMap.  */
  using OutputImageType = TOutputImage;

  /** Type for the region of the input image. */
  using RegionType = typename InputImageType::RegionType;

  /** Type for the index of the input image. */
  using IndexType = typename RegionType::IndexType;

  /** Type for the index of the input image. */
  using OffsetType = typename InputImageType::OffsetType;

  /** Type for the pixel type of the input image. */
  using PixelType = typename InputImageType::PixelType;

  /** Type for the size of the input image. */
  using SizeType = typename RegionType::SizeType;

  /** The dimension of the input image. */
  static constexpr unsigned int InputImageDimension = InputImageType::ImageDimension;

  /** Pointer Type for the vector distance image */
  using VectorImageType = Image<OffsetType, Self::InputImageDimension>;

  /** Pointer Type for input image. */
  using InputImagePointer = typename InputImageType::ConstPointer;

  /** Pointer Type for the output image. */
  using OutputImagePointer = typename OutputImageType::Pointer;

  /** Pointer Type for the vector distance image. */
  using VectorImagePointer = typename VectorImageType::Pointer;

  using VoronoiImageType = TVoronoiImage;
  using VoronoiImagePointer = typename VoronoiImageType::Pointer;
  using VoronoiPixelType = typename VoronoiImageType::PixelType;

  /** Pointer Type for data object */
  using typename Superclass::DataObjectPointer;

  /** Set if the distance should be squared. */
  itkSetMacro(SquaredDistance, bool);

  /** Get the distance squared. */
  itkGetConstReferenceMacro(SquaredDistance, bool);

  /** Set On/Off if the distance is squared. */
  itkBooleanMacro(SquaredDistance);

  /** Set if image spacing should be used in computing distances. */
  itkSetMacro(UseImageSpacing, bool);

  /** Get whether spacing is used. */
  itkGetConstReferenceMacro(UseImageSpacing, bool);

  /** Set On/Off whether spacing is used. */
  itkBooleanMacro(UseImageSpacing);

  /** Set if the inside represents positive values in the signed distance
   *  map. By convention ON pixels are treated as inside pixels.           */
  itkSetMacro(InsideIsPositive, bool);

  /** Get if the inside represents positive values in the signed distance map.
   *  See GetInsideIsPositive()  */
  itkGetConstReferenceMacro(InsideIsPositive, bool);

  /** Set if the inside represents positive values in the signed distance
   * map. By convention ON pixels are treated as inside pixels. Default is
   * true.                             */
  itkBooleanMacro(InsideIsPositive);

  /** Get Voronoi Map
   * This map shows for each pixel what object is closest to it.
   * Each object should be labeled by a number (larger than 0),
   * so the map has a value for each pixel corresponding to the label
   * of the closest object.  */
  VoronoiImageType *
  GetVoronoiMap();

  /** Get Distance map image.  The distance map is shown as a gray
   * value image depending on the pixel type of the output image.
   * Regarding the source image, background should be dark (gray value
   * = 0) and object should have a gray value larger than 0.  The
   * minimal distance is calculated on the object frontier, and the
   * output image gives for each pixel its minimal distance from the
   * object (if there is more than one object the closest object is
   * considered). */
  OutputImageType *
  GetDistanceMap();

  /** Get vector field of distances. */
  VectorImageType *
  GetVectorDistanceMap();

  /** This is overloaded to create the VectorDistanceMap output image */
  using DataObjectPointerArraySizeType = ProcessObject::DataObjectPointerArraySizeType;
  using Superclass::MakeOutput;
  DataObjectPointer
  MakeOutput(DataObjectPointerArraySizeType idx) override;

#ifdef ITK_USE_CONCEPT_CHECKING
  // Begin concept checking
  itkConceptMacro(IntConvertibleToInputCheck, (Concept::Convertible<int, PixelType>));
  itkConceptMacro(InputHasNumericTraitsCheck, (Concept::HasNumericTraits<PixelType>));
  itkConceptMacro(OutputImagePixelTypeIsFloatingPointCheck,
                  (Concept::IsFloatingPoint<typename OutputImageType::PixelType>));
  // End concept checking
#endif

protected:
  SignedDanielssonDistanceMapImageFilter();
  ~SignedDanielssonDistanceMapImageFilter() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  /** Compute Danielsson distance map and Voronoi Map. */
  void
  GenerateData() override;

private:
  bool m_SquaredDistance{};
  bool m_UseImageSpacing{ true };
  bool m_InsideIsPositive{}; // ON is treated as inside pixels
};                           // end of SignedDanielssonDistanceMapImageFilter
                             // class
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkSignedDanielssonDistanceMapImageFilter.hxx"
#endif

#endif