1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkDiscreteGradientMagnitudeGaussianImageFunction_h
#define itkDiscreteGradientMagnitudeGaussianImageFunction_h
#include "itkNeighborhoodOperatorImageFunction.h"
#include "itkGaussianDerivativeOperator.h"
namespace itk
{
/**
* \class DiscreteGradientMagnitudeGaussianImageFunction
* \brief Compute the discrete gradient magnitude gaussian of an the image
* at a specific location in space, i.e. point, index or continuous
* index. This class computes a single derivative given the order in
* each direction (by default zero).
* This class is templated over the input image type.
*
* The Initialize() method must be called after setting the parameters and before
* evaluating the function.
*
* \author Ivan Macia, Vicomtech, Spain, https://www.vicomtech.org/en
*
* This implementation was taken from the Insight Journal paper:
* https://www.insight-journal.org/browse/publication/179
*
* \sa NeighborhoodOperator
* \sa ImageFunction
* \ingroup ITKReview
*/
template <typename TInputImage, typename TOutput = double>
class ITK_TEMPLATE_EXPORT DiscreteGradientMagnitudeGaussianImageFunction
: public ImageFunction<TInputImage, TOutput, TOutput>
{
public:
/**Standard "Self" type alias */
using Self = DiscreteGradientMagnitudeGaussianImageFunction;
/** Standard "Superclass" type alias */
using Superclass = ImageFunction<TInputImage, TOutput, TOutput>;
/** Smart pointer type alias support */
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory */
itkNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(DiscreteGradientMagnitudeGaussianImageFunction);
/** Image dependent types */
using typename Superclass::InputImageType;
using typename Superclass::InputPixelType;
using typename Superclass::IndexType;
using typename Superclass::IndexValueType;
using typename Superclass::ContinuousIndexType;
using typename Superclass::PointType;
/** Dimension of the underlying image */
static constexpr unsigned int ImageDimension2 = InputImageType::ImageDimension;
/** Output type */
using typename Superclass::OutputType;
/** Arrays for native types */
using VarianceArrayType = FixedArray<double, Self::ImageDimension2>;
using OrderArrayType = FixedArray<unsigned int, Self::ImageDimension2>;
using GaussianDerivativeOperatorType = itk::GaussianDerivativeOperator<TOutput, Self::ImageDimension2>;
/** Array to store gaussian derivative operators one for each dimension */
using GaussianDerivativeOperatorArrayType = FixedArray<GaussianDerivativeOperatorType, 2 * Self::ImageDimension2>;
/** Precomputed N-dimensional derivative kernel */
using KernelType = Neighborhood<TOutput, Self::ImageDimension2>;
/** Array to store precomputed N-dimensional kernels for the gradient
components */
using KernelArrayType = FixedArray<KernelType, Self::ImageDimension2>;
/** Image function that performs convolution with the neighborhood operator */
using OperatorImageFunctionType = NeighborhoodOperatorImageFunction<InputImageType, TOutput>;
using OperatorImageFunctionPointer = typename OperatorImageFunctionType::Pointer;
using InterpolationModeEnum = itk::GaussianDerivativeOperatorEnums::InterpolationMode;
#if !defined(ITK_LEGACY_REMOVE)
/**Exposes enums values for backwards compatibility*/
static constexpr InterpolationModeEnum NearestNeighbourInterpolation =
InterpolationModeEnum::NearestNeighbourInterpolation;
static constexpr InterpolationModeEnum LinearInterpolation = InterpolationModeEnum::LinearInterpolation;
#endif
public:
/** Evaluate the function in the given dimension at specified point */
OutputType
Evaluate(const PointType & point) const override;
/** Evaluate the function at specified Index position */
OutputType
EvaluateAtIndex(const IndexType & index) const override;
/** Evaluate the function at specified ContinuousIndex position */
OutputType
EvaluateAtContinuousIndex(const ContinuousIndexType & index) const override;
/** Set/Get the variance for the discrete Gaussian kernel.
* Sets the variance for individual dimensions. The default is 0.0 in each dimension.
* If UseImageSpacing is true, the units are the physical units of your image.
* If UseImageSpacing is false then the units are pixels */
itkSetMacro(Variance, VarianceArrayType);
itkGetConstMacro(Variance, const VarianceArrayType);
itkSetVectorMacro(Variance, double, VarianceArrayType::Length);
/** Convenience method for setting the variance for all dimensions */
virtual void
SetVariance(double variance)
{
m_Variance.Fill(variance);
this->Modified();
}
/** Convenience method for setting the variance through the standard deviation
*/
void
SetSigma(const double sigma)
{
SetVariance(sigma * sigma);
}
/** Set/Get the desired maximum error of the gaussian approximation. Maximum
* error is the difference between the area under the discrete Gaussian curve
* and the area under the continuous Gaussian. Maximum error affects the
* Gaussian operator size. The value is clamped between 0.00001 and
* 0.99999. */
itkSetClampMacro(MaximumError, double, 0.00001, 0.99999);
itkGetConstMacro(MaximumError, double);
/** Set/Get the flag for calculating scale-space normalized derivatives.
* Normalized derivatives are obtained multiplying by the scale
* parameter t. */
itkSetMacro(NormalizeAcrossScale, bool);
itkGetConstMacro(NormalizeAcrossScale, bool);
itkBooleanMacro(NormalizeAcrossScale);
/** Set/Get the flag for using image spacing when calculating derivatives. */
itkSetMacro(UseImageSpacing, bool);
itkGetConstMacro(UseImageSpacing, bool);
itkBooleanMacro(UseImageSpacing);
/** Set/Get a limit for growth of the kernel. Small maximum error values with
* large variances will yield very large kernel sizes. This value can be
* used to truncate a kernel in such instances. A warning will be given on
* truncation of the kernel. */
itkSetMacro(MaximumKernelWidth, unsigned int);
itkGetConstMacro(MaximumKernelWidth, unsigned int);
/** Set/Get the interpolation mode. */
itkSetEnumMacro(InterpolationMode, InterpolationModeEnum);
itkGetEnumMacro(InterpolationMode, InterpolationModeEnum);
/** Set the input image.
* \warning this method caches BufferedRegion information.
* If the BufferedRegion has changed, user must call
* SetInputImage again to update cached values. */
void
SetInputImage(const InputImageType * ptr) override;
/** Initialize the Gaussian kernel. Call this method before evaluating the function.
* This method MUST be called after any changes to function parameters. */
virtual void
Initialize()
{
RecomputeGaussianKernel();
}
protected:
DiscreteGradientMagnitudeGaussianImageFunction();
DiscreteGradientMagnitudeGaussianImageFunction(const Self &) {}
~DiscreteGradientMagnitudeGaussianImageFunction() override = default;
void
operator=(const Self &)
{}
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
RecomputeGaussianKernel();
// void RecomputeContinuousGaussianKernel(
// const double* offset) const;
private:
/** Desired variance of the discrete Gaussian function */
VarianceArrayType m_Variance{};
/** Difference between the areas under the curves of the continuous and
* discrete Gaussian functions */
double m_MaximumError{ 0.005 };
/** Maximum kernel size allowed. This value is used to truncate a kernel
* that has grown too large. A warning is given when the specified maximum
* error causes the kernel to exceed this size */
unsigned int m_MaximumKernelWidth{ 30 };
/** Array of derivative operators, one for each dimension and order.
* First N zero-order operators are stored, then N first-order making
* 2*N operators altogether where N=ImageDimension */
GaussianDerivativeOperatorArrayType m_OperatorArray{};
/** Array of N-dimensional kernels used to calculate gradient components */
KernelArrayType m_KernelArray{};
/** OperatorImageFunction */
OperatorImageFunctionPointer m_OperatorImageFunction{};
/** Flag for scale-space normalization of derivatives */
bool m_NormalizeAcrossScale{ true };
/** Flag to indicate whether to use image spacing */
bool m_UseImageSpacing{ true };
/** Interpolation mode */
InterpolationModeEnum m_InterpolationMode{ InterpolationModeEnum::NearestNeighbourInterpolation };
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkDiscreteGradientMagnitudeGaussianImageFunction.hxx"
#endif
#endif
|