File: itkDiscreteGradientMagnitudeGaussianImageFunctionTest.cxx

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (231 lines) | stat: -rw-r--r-- 8,254 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkDiscreteGradientMagnitudeGaussianImageFunction.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkTestingMacros.h"


template <int VDimension>
int
itkDiscreteGradientMagnitudeGaussianImageFunctionTestND(int argc, char * argv[])
{
  const unsigned int Dimension = VDimension;

  using PixelType = float;
  using ImageType = itk::Image<PixelType, Dimension>;

  // Read input image
  using ReaderType = itk::ImageFileReader<ImageType>;
  auto reader = ReaderType::New();
  reader->SetFileName(argv[1]);

  ITK_TRY_EXPECT_NO_EXCEPTION(reader->Update());

  ImageType * inputImage = reader->GetOutput();


  // Create the itk::DiscreteGradientMagnitudeGaussianImageFunction
  using DiscreteGradientMagnitudeGaussianFunctionType =
    itk::DiscreteGradientMagnitudeGaussianImageFunction<ImageType, PixelType>;
  typename DiscreteGradientMagnitudeGaussianFunctionType::Pointer function =
    DiscreteGradientMagnitudeGaussianFunctionType::New();

  function->SetInputImage(inputImage);


  // Set up operator parameters
  double sigma = std::stod(argv[3]);

  double                                                                        maxError = 0.001;
  unsigned int                                                                  maxKernelWidth = 100;
  typename DiscreteGradientMagnitudeGaussianFunctionType::InterpolationModeEnum interpolationMode =
    DiscreteGradientMagnitudeGaussianFunctionType::InterpolationModeEnum::NearestNeighbourInterpolation;
  bool useImageSpacing = true;

  if (argc > 4)
  {
    maxError = std::stod(argv[4]);
  }
  if (argc > 5)
  {
    maxKernelWidth = std::stoi(argv[5]);
  }
  if (argc > 6)
  {
    interpolationMode =
      static_cast<typename DiscreteGradientMagnitudeGaussianFunctionType::InterpolationModeEnum>(std::stoi(argv[6]));
  }
  if (argc > 7)
  {
    useImageSpacing = static_cast<bool>(std::stoi(argv[7]));
  }

  double                                                                    varianceValue = sigma * sigma;
  typename DiscreteGradientMagnitudeGaussianFunctionType::VarianceArrayType varianceArray;
  varianceArray.Fill(varianceValue);

  function->SetVariance(varianceArray);
  ITK_TEST_SET_GET_VALUE(varianceArray, function->GetVariance());

  // Increase code coverage calling other variations of the SetVariance method
  function->SetVariance(varianceValue);
  ITK_TEST_SET_GET_VALUE(varianceArray, function->GetVariance());

  // Test itkSetVectorMacro
  double varianceVector[DiscreteGradientMagnitudeGaussianFunctionType::VarianceArrayType::Length];
  for (unsigned int i = 0; i < DiscreteGradientMagnitudeGaussianFunctionType::VarianceArrayType::Length; ++i)
  {
    varianceVector[i] = varianceValue;
  }
  function->SetVariance(varianceVector);
  ITK_TEST_SET_GET_VALUE(varianceArray, function->GetVariance());


  function->SetMaximumError(maxError);
  ITK_TEST_SET_GET_VALUE(maxError, function->GetMaximumError());

  function->SetMaximumKernelWidth(maxKernelWidth);
  ITK_TEST_SET_GET_VALUE(maxKernelWidth, function->GetMaximumKernelWidth());

  bool normalizeAcrossScale = true;
  ITK_TEST_SET_GET_BOOLEAN(function, NormalizeAcrossScale, normalizeAcrossScale);

  ITK_TEST_SET_GET_BOOLEAN(function, UseImageSpacing, useImageSpacing);

  function->SetInterpolationMode(interpolationMode);
  ITK_TEST_SET_GET_VALUE(interpolationMode, function->GetInterpolationMode());


  function->Initialize();


  // Create image for storing result
  auto output = ImageType::New();
  output->SetSpacing(inputImage->GetSpacing());
  output->SetOrigin(inputImage->GetOrigin());
  output->SetDirection(inputImage->GetDirection());
  output->SetLargestPossibleRegion(inputImage->GetLargestPossibleRegion());
  output->SetRequestedRegion(inputImage->GetRequestedRegion());
  output->SetBufferedRegion(inputImage->GetBufferedRegion());
  output->Allocate();
  output->FillBuffer(PixelType{});


  // Step over input and output images
  using ConstIteratorType = itk::ImageRegionConstIterator<ImageType>;
  using IteratorType = itk::ImageRegionIterator<ImageType>;

  ConstIteratorType it(inputImage, inputImage->GetRequestedRegion());
  it.GoToBegin();
  IteratorType out(output, output->GetRequestedRegion());
  out.GoToBegin();

  using PointType = typename DiscreteGradientMagnitudeGaussianFunctionType::PointType;
  PointType           point;
  const unsigned long nop = inputImage->GetRequestedRegion().GetNumberOfPixels();
  unsigned long       pixelNumber = 0;
  while (!it.IsAtEnd())
  {
    // To test all available Evaluate functions, we split it in three parts.
    if (pixelNumber < nop / 3)
    {
      out.Set(function->EvaluateAtIndex(it.GetIndex()));
    }
    else if (pixelNumber < nop * 2 / 3)
    {
      inputImage->TransformIndexToPhysicalPoint(it.GetIndex(), point);
      out.Set(function->Evaluate(point));
    }
    else
    {
      using ContinuousIndexType = typename DiscreteGradientMagnitudeGaussianFunctionType::ContinuousIndexType;
      using ContinuousValueIndexType = typename ContinuousIndexType::ValueType;

      inputImage->TransformIndexToPhysicalPoint(it.GetIndex(), point);
      const ContinuousIndexType cindex =
        inputImage->template TransformPhysicalPointToContinuousIndex<ContinuousValueIndexType>(point);
      out.Set(function->EvaluateAtContinuousIndex(cindex));
    }
    ++it;
    ++out;
    ++pixelNumber;
  }

  // Rescale output
  using OutputPixelType = unsigned char;
  using OutputImageType = itk::Image<OutputPixelType, Dimension>;
  using RescaleType = itk::RescaleIntensityImageFilter<ImageType, OutputImageType>;
  auto rescaler = RescaleType::New();
  rescaler->SetInput(output);
  rescaler->SetOutputMinimum(itk::NumericTraits<OutputPixelType>::min());
  rescaler->SetOutputMaximum(itk::NumericTraits<OutputPixelType>::max());

  // Write the output image
  using WriterType = itk::ImageFileWriter<OutputImageType>;
  auto writer = WriterType::New();
  writer->SetFileName(argv[2]);
  writer->SetInput(rescaler->GetOutput());


  ITK_TRY_EXPECT_NO_EXCEPTION(writer->Update());


  std::cout << "Test finished." << std::endl;
  return EXIT_SUCCESS;
}

int
itkDiscreteGradientMagnitudeGaussianImageFunctionTest(int argc, char * argv[])
{
  if (argc < 4)
  {
    std::cerr << "Missing parameters." << std::endl;
    std::cerr << "Usage: " << itkNameOfTestExecutableMacro(argv);
    std::cerr << "inputFileName"
                 " outputFileName"
                 " sigma"
                 " [maximumError]"
                 " [maximumKernelWidth]"
                 " [interpolator]: 0: NearestNeighbourInterpolation; 1: LinearInterpolation"
                 " useImageSpacing"
              << std::endl;
    return EXIT_FAILURE;
  }


  // Exercise basic object methods
  // Done outside the helper function in the test because GCC is limited
  // when calling overloaded base class functions.
  constexpr unsigned int Dimension = 2;

  using PixelType = float;
  using ImageType = itk::Image<PixelType, Dimension>;

  using DiscreteGradientMagnitudeGaussianFunctionType =
    itk::DiscreteGradientMagnitudeGaussianImageFunction<ImageType, PixelType>;
  DiscreteGradientMagnitudeGaussianFunctionType::Pointer function =
    DiscreteGradientMagnitudeGaussianFunctionType::New();

  ITK_EXERCISE_BASIC_OBJECT_METHODS(function, DiscreteGradientMagnitudeGaussianImageFunction, ImageFunction);


  return itkDiscreteGradientMagnitudeGaussianImageFunctionTestND<Dimension>(argc, argv);
}