1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkOptImageToImageMetricsTest_h
#define itkOptImageToImageMetricsTest_h
#include "itkTimeProbe.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
namespace itk
{
template <typename FixedImageType,
typename MovingImageType,
typename InterpolatorType,
typename TransformType,
typename MetricType,
typename MetricInitializerType>
class OptImageToImageMetricsTest
{
public:
OptImageToImageMetricsTest() = default;
int
RunTest(FixedImageType * fixed,
MovingImageType * moving,
InterpolatorType * interpolator,
TransformType * transform,
MetricType * metric,
MetricInitializerType metricInitializer)
{
using ParametersType = typename MetricType::ParametersType;
std::cout << "-------------------------------------------------------------------" << std::endl;
std::cout << "Testing" << std::endl;
std::cout << "\tMetric : " << metric->GetNameOfClass() << std::endl;
std::cout << "\tInterpolator : " << interpolator->GetNameOfClass() << std::endl;
std::cout << "\tTransform : " << transform->GetNameOfClass() << std::endl;
std::cout << "-------------------------------------------------------------------" << std::endl;
std::cout << std::endl;
int result = EXIT_SUCCESS;
// connect the interpolator
metric->SetInterpolator(interpolator);
// connect the transform
metric->SetTransform(transform);
// connect the images to the metric
metric->SetFixedImage(fixed);
metric->SetMovingImage(moving);
// call custom initialization for the metric
metricInitializer.Initialize();
// Always use the same seed value.
// All instances are the same since MersenneTwisterRandomVariateGenerator
// uses a singleton pattern.
itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance()->SetSeed(42);
// initialize the metric
// Samples are drawn here in metric->Initialize(),
// so we seed the random number generator
// immediately before this call.
metric->Initialize();
// Set the transform to identity
transform->SetIdentity();
// Get the transform parameters for identity.
ParametersType parameters = transform->GetParameters();
typename MetricType::MeasureType value;
typename MetricType::DerivativeType derivative;
// Try GetValue and GetDerivative...
value = metric->GetValue(parameters);
metric->GetDerivative(parameters, derivative);
// Make a time probe
itk::TimeProbe timeProbe;
// Walk around the parameter value at parameterIdx
for (unsigned int parameterIdx = 0; parameterIdx < parameters.GetSize(); ++parameterIdx)
{
std::cout << "Param[" << parameterIdx << "]\tValue\tDerivative " << std::endl;
double startVal = parameters[parameterIdx];
// endVal is 10% beyond startVal.
double endVal = 1.10 * startVal;
// If startVal is 0, endVal needs to be fixed up.
if (itk::Math::abs(endVal - 0.0) < 1e-8)
{
endVal = startVal + 1.0;
}
double incr = (endVal - startVal) / 10.0;
for (double pval = startVal; pval <= endVal; pval += incr)
{
parameters[parameterIdx] = pval;
timeProbe.Start();
metric->GetValueAndDerivative(parameters, value, derivative);
timeProbe.Stop();
std::cout << pval << '\t' << value << '\t' << derivative << std::endl;
}
}
std::cout << std::endl;
std::cout << "Mean time for GetValueAndDerivative : " << timeProbe.GetMean() << std::endl;
std::cout << std::endl;
std::cout << "------------------------------Done---------------------------------" << std::endl;
return result;
}
};
template <typename FixedImageType, typename MovingImageType>
class MeanSquaresMetricInitializer
{
public:
using MetricType = itk::MeanSquaresImageToImageMetric<FixedImageType, MovingImageType>;
MeanSquaresMetricInitializer(MetricType * metric) { m_Metric = metric; }
void
Initialize()
{
// Do stuff on m_Metric
m_Metric->UseAllPixelsOn();
}
protected:
MetricType * m_Metric;
};
template <typename FixedImageType, typename MovingImageType>
class MattesMIMetricInitializer
{
public:
using MetricType = itk::MattesMutualInformationImageToImageMetric<FixedImageType, MovingImageType>;
MattesMIMetricInitializer(MetricType * metric) { m_Metric = metric; }
void
Initialize()
{
// Do stuff on m_Metric
m_Metric->SetNumberOfHistogramBins(50);
m_Metric->SetNumberOfSpatialSamples(5000);
}
protected:
MetricType * m_Metric;
};
template <typename FixedImageType, typename MovingImageType>
class MIMetricInitializer
{
public:
using MetricType = itk::MutualInformationImageToImageMetric<FixedImageType, MovingImageType>;
MIMetricInitializer(MetricType * metric) { m_Metric = metric; }
void
Initialize()
{
// Do stuff on m_Metric
m_Metric->SetNumberOfSpatialSamples(400);
}
protected:
MetricType * m_Metric;
};
template <typename InterpolatorType,
typename TransformType,
typename FixedImageReaderType,
typename MovingImageReaderType>
void
BasicTest(FixedImageReaderType * fixedImageReader,
MovingImageReaderType * movingImageReader,
InterpolatorType * interpolator,
TransformType * transform)
{
using FixedImageType = typename FixedImageReaderType::OutputImageType;
using MovingImageType = typename MovingImageReaderType::OutputImageType;
fixedImageReader->Update();
movingImageReader->Update();
typename FixedImageType::Pointer fixed = fixedImageReader->GetOutput();
typename MovingImageType::Pointer moving = movingImageReader->GetOutput();
// Mean squares
using MetricType = itk::MeanSquaresImageToImageMetric<FixedImageType, MovingImageType>;
auto msMetric = MetricType::New();
MeanSquaresMetricInitializer<FixedImageType, MovingImageType> msMetricInitializer(msMetric);
TestAMetric(fixedImageReader, movingImageReader, interpolator, transform, msMetric.GetPointer(), msMetricInitializer);
// Mattes MI
using MattesMetricType = itk::MattesMutualInformationImageToImageMetric<FixedImageType, MovingImageType>;
auto mattesMetric = MattesMetricType::New();
MattesMIMetricInitializer<FixedImageType, MovingImageType> mattesMetricInitializer(mattesMetric);
TestAMetric(
fixedImageReader, movingImageReader, interpolator, transform, mattesMetric.GetPointer(), mattesMetricInitializer);
}
template <typename FixedImageReaderType,
typename MovingImageReaderType,
typename InterpolatorType,
typename TransformType,
typename MetricType,
typename MetricInitializerType>
void
TestAMetric(FixedImageReaderType * fixedImageReader,
MovingImageReaderType * movingImageReader,
InterpolatorType * interpolator,
TransformType * transform,
MetricType * metric,
MetricInitializerType metricInitializer)
{
using FixedImageType = typename FixedImageReaderType::OutputImageType;
using MovingImageType = typename MovingImageReaderType::OutputImageType;
metric->SetFixedImageRegion(fixedImageReader->GetOutput()->GetBufferedRegion());
OptImageToImageMetricsTest<FixedImageType,
MovingImageType,
InterpolatorType,
TransformType,
MetricType,
MetricInitializerType>
testMetric;
testMetric.RunTest(
fixedImageReader->GetOutput(), movingImageReader->GetOutput(), interpolator, transform, metric, metricInitializer);
}
template <typename FixedImageReaderType, typename MovingImageReaderType>
void
AffineLinearTest(FixedImageReaderType * fixedImageReader, MovingImageReaderType * movingImageReader)
{
using MovingImageType = typename MovingImageReaderType::OutputImageType;
using InterpolatorType = itk::LinearInterpolateImageFunction<MovingImageType, double>;
using TransformType = itk::AffineTransform<double, 2>;
auto interpolator = InterpolatorType::New();
auto transform = TransformType::New();
BasicTest(fixedImageReader, movingImageReader, interpolator.GetPointer(), transform.GetPointer());
}
template <typename FixedImageReaderType, typename MovingImageReaderType>
void
RigidLinearTest(FixedImageReaderType * fixedImageReader, MovingImageReaderType * movingImageReader)
{
using MovingImageType = typename MovingImageReaderType::OutputImageType;
using InterpolatorType = itk::LinearInterpolateImageFunction<MovingImageType, double>;
using TransformType = itk::Rigid2DTransform<double>;
auto interpolator = InterpolatorType::New();
auto transform = TransformType::New();
BasicTest(fixedImageReader, movingImageReader, interpolator.GetPointer(), transform.GetPointer());
}
template <typename FixedImageReaderType, typename MovingImageReaderType>
void
TranslationLinearTest(FixedImageReaderType * fixedImageReader, MovingImageReaderType * movingImageReader)
{
using MovingImageType = typename MovingImageReaderType::OutputImageType;
using InterpolatorType = itk::LinearInterpolateImageFunction<MovingImageType, double>;
using TransformType = itk::TranslationTransform<double, 2>;
auto interpolator = InterpolatorType::New();
auto transform = TransformType::New();
BasicTest(fixedImageReader, movingImageReader, interpolator.GetPointer(), transform.GetPointer());
}
template <typename FixedImageReaderType, typename MovingImageReaderType>
void
DoDebugTest(FixedImageReaderType * fixedImageReader, MovingImageReaderType * movingImageReader)
{
using MovingImageType = typename MovingImageReaderType::OutputImageType;
using InterpolatorType = itk::LinearInterpolateImageFunction<MovingImageType, double>;
using TransformType = itk::Rigid2DTransform<double>;
auto interpolator = InterpolatorType::New();
auto transform = TransformType::New();
using FixedImageType = typename FixedImageReaderType::OutputImageType;
using MovingImageType = typename MovingImageReaderType::OutputImageType;
fixedImageReader->Update();
movingImageReader->Update();
typename FixedImageType::Pointer fixed = fixedImageReader->GetOutput();
typename MovingImageType::Pointer moving = movingImageReader->GetOutput();
// Mean squares
using MetricType = itk::MeanSquaresImageToImageMetric<FixedImageType, MovingImageType>;
auto metric = MetricType::New();
MeanSquaresMetricInitializer<FixedImageType, MovingImageType> metricInitializer(metric);
metric->SetFixedImageRegion(fixedImageReader->GetOutput()->GetBufferedRegion());
using ParametersType = typename MetricType::ParametersType;
std::cout << "-------------------------------------------------------------------" << std::endl;
std::cout << "Testing" << std::endl;
std::cout << "\tMetric : " << metric->GetNameOfClass() << std::endl;
std::cout << "\tInterpolator : " << interpolator->GetNameOfClass() << std::endl;
std::cout << "\tTransform : " << transform->GetNameOfClass() << std::endl;
std::cout << "-------------------------------------------------------------------" << std::endl;
std::cout << std::endl;
// connect the interpolator
metric->SetInterpolator(interpolator);
// connect the transform
metric->SetTransform(transform);
// connect the images to the metric
metric->SetFixedImage(fixed);
metric->SetMovingImage(moving);
// call custom initialization for the metric
metricInitializer.Initialize();
// initialize the metric
metric->Initialize();
// Set the transform to identity
transform->SetIdentity();
// Get the transform parameters for identity.
ParametersType parameters = transform->GetParameters();
typename MetricType::MeasureType value;
typename MetricType::DerivativeType derivative;
parameters[0] = 0.1;
metric->GetValueAndDerivative(parameters, value, derivative);
// metric->StopDebug();
// Force the test to end here so the debug file
// ends at the right place.
exit(EXIT_SUCCESS);
}
} // end namespace itk
#endif
|