File: itkRecursiveMultiResolutionPyramidImageFilter.hxx

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (399 lines) | stat: -rw-r--r-- 13,655 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkRecursiveMultiResolutionPyramidImageFilter_hxx
#define itkRecursiveMultiResolutionPyramidImageFilter_hxx

#include "itkGaussianOperator.h"
#include "itkCastImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkMacro.h"
#include "itkResampleImageFilter.h"
#include "itkShrinkImageFilter.h"
#include "itkIdentityTransform.h"

#include "itkMath.h"

namespace itk
{

template <typename TInputImage, typename TOutputImage>
RecursiveMultiResolutionPyramidImageFilter<TInputImage, TOutputImage>::RecursiveMultiResolutionPyramidImageFilter()
{
  this->Superclass::m_UseShrinkImageFilter = true;
}

template <typename TInputImage, typename TOutputImage>
void
RecursiveMultiResolutionPyramidImageFilter<TInputImage, TOutputImage>::GenerateData()
{
  if (!this->IsScheduleDownwardDivisible(this->GetSchedule()))
  {
    // use the Superclass implementation
    this->Superclass::GenerateData();
    return;
  }

  // Get the input and output pointers
  InputImageConstPointer inputPtr = this->GetInput();

  // Create caster, smoother and resampleShrink filters
  using CasterType = CastImageFilter<TInputImage, TOutputImage>;
  using CopierType = CastImageFilter<TOutputImage, TOutputImage>;
  using SmootherType = DiscreteGaussianImageFilter<TOutputImage, TOutputImage>;

  using ImageToImageType = ImageToImageFilter<TOutputImage, TOutputImage>;
  using ResampleShrinkerType = ResampleImageFilter<TOutputImage, TOutputImage>;
  using ShrinkerType = ShrinkImageFilter<TOutputImage, TOutputImage>;

  auto caster = CasterType::New();
  auto copier = CopierType::New();
  auto smoother = SmootherType::New();

  typename ImageToImageType::Pointer shrinkerFilter;
  //
  // only one of these pointers is going to be valid, depending on the
  // value of UseShrinkImageFilter flag
  typename ResampleShrinkerType::Pointer resampleShrinker;
  typename ShrinkerType::Pointer         shrinker;

  if (this->GetUseShrinkImageFilter())
  {
    shrinker = ShrinkerType::New();
    shrinkerFilter = shrinker.GetPointer();
  }
  else
  {
    resampleShrinker = ResampleShrinkerType::New();
    using LinearInterpolatorType = itk::LinearInterpolateImageFunction<OutputImageType, double>;
    auto interpolator = LinearInterpolatorType::New();
    using IdentityTransformType = itk::IdentityTransform<double, OutputImageType::ImageDimension>;
    auto identityTransform = IdentityTransformType::New();
    resampleShrinker->SetInterpolator(interpolator);
    resampleShrinker->SetDefaultPixelValue(0);
    resampleShrinker->SetTransform(identityTransform);
    shrinkerFilter = resampleShrinker.GetPointer();
  }

  int          ilevel;
  unsigned int idim;
  unsigned int factors[ImageDimension];
  double       variance[ImageDimension];

  bool                              allOnes;
  OutputImagePointer                outputPtr;
  OutputImagePointer                swapPtr;
  typename TOutputImage::RegionType LPRegion;

  smoother->SetUseImageSpacing(false);
  smoother->SetMaximumError(this->GetMaximumError());
  shrinkerFilter->SetInput(smoother->GetOutput());

  // recursively compute outputs starting from the last one
  for (ilevel = this->GetNumberOfLevels() - 1; ilevel > -1; ilevel--)
  {
    this->UpdateProgress(1.0 - static_cast<float>(1 + ilevel) / static_cast<float>(this->GetNumberOfLevels()));

    // Allocate memory for each output
    outputPtr = this->GetOutput(ilevel);
    outputPtr->SetBufferedRegion(outputPtr->GetRequestedRegion());
    outputPtr->Allocate();

    // cached a copy of the largest possible region
    LPRegion = outputPtr->GetLargestPossibleRegion();

    // Check shrink factors and compute variances
    allOnes = true;
    for (idim = 0; idim < ImageDimension; ++idim)
    {
      if (ilevel == static_cast<int>(this->GetNumberOfLevels()) - 1)
      {
        factors[idim] = this->GetSchedule()[ilevel][idim];
      }
      else
      {
        factors[idim] = this->GetSchedule()[ilevel][idim] / this->GetSchedule()[ilevel + 1][idim];
      }
      variance[idim] = itk::Math::sqr(0.5 * static_cast<float>(factors[idim]));
      if (factors[idim] != 1)
      {
        allOnes = false;
      }
      else
      {
        variance[idim] = 0.0;
      }
    }

    if (allOnes && ilevel == static_cast<int>(this->GetNumberOfLevels()) - 1)
    {
      // just copy the input over
      caster->SetInput(inputPtr);
      caster->GraftOutput(outputPtr);
      // ensure only the requested region is updated
      caster->UpdateOutputInformation();
      caster->GetOutput()->SetRequestedRegion(outputPtr->GetRequestedRegion());
      caster->GetOutput()->PropagateRequestedRegion();
      caster->GetOutput()->UpdateOutputData();

      swapPtr = caster->GetOutput();
    }
    else if (allOnes)
    {
      // just copy the data over
      copier->SetInput(swapPtr);
      copier->GraftOutput(outputPtr);
      // ensure only the requested region is updated
      copier->GetOutput()->UpdateOutputInformation();
      copier->GetOutput()->SetRequestedRegion(outputPtr->GetRequestedRegion());
      copier->GetOutput()->PropagateRequestedRegion();
      copier->GetOutput()->UpdateOutputData();

      swapPtr = copier->GetOutput();
    }
    else
    {
      if (ilevel == static_cast<int>(this->GetNumberOfLevels()) - 1)
      {
        // use caster -> smoother -> shrinker pipeline
        caster->SetInput(inputPtr);
        smoother->SetInput(caster->GetOutput());
      }
      else
      {
        // use smoother -> shrinker pipeline
        smoother->SetInput(swapPtr);
      }

      smoother->SetVariance(variance);

      //      shrinker->SetShrinkFactors( factors );
      //      shrinker->GraftOutput( outputPtr );
      if (!this->GetUseShrinkImageFilter())
      {
        resampleShrinker->SetOutputParametersFromImage(outputPtr);
      }
      else
      {
        shrinker->SetShrinkFactors(factors);
      }
      shrinkerFilter->GraftOutput(outputPtr);
      shrinkerFilter->Modified();
      // ensure only the requested region is updated
      shrinkerFilter->GetOutput()->UpdateOutputInformation();
      shrinkerFilter->GetOutput()->SetRequestedRegion(outputPtr->GetRequestedRegion());
      shrinkerFilter->GetOutput()->PropagateRequestedRegion();
      shrinkerFilter->GetOutput()->UpdateOutputData();

      swapPtr = shrinkerFilter->GetOutput();
    }

    // graft pipeline output back onto this filter's output
    swapPtr->SetLargestPossibleRegion(LPRegion);
    this->GraftNthOutput(ilevel, swapPtr);

    // disconnect from pipeline to stop cycle
    swapPtr->DisconnectPipeline();
  }
}

template <typename TInputImage, typename TOutputImage>
void
RecursiveMultiResolutionPyramidImageFilter<TInputImage, TOutputImage>::GenerateOutputRequestedRegion(DataObject * ptr)
{
  // call the superclass's implementation of this method
  Superclass::GenerateOutputRequestedRegion(ptr);

  auto * refOutputPtr = itkDynamicCastInDebugMode<TOutputImage *>(ptr);
  if (!refOutputPtr)
  {
    itkExceptionMacro("Could not cast ptr to TOutputImage*.");
  }

  // find the index for this output
  unsigned int refLevel;
  refLevel = static_cast<unsigned int>(refOutputPtr->GetSourceOutputIndex());

  using OutputPixelType = typename TOutputImage::PixelType;
  using OperatorType = GaussianOperator<OutputPixelType, ImageDimension>;

  OperatorType oper;
  oper.SetMaximumError(this->GetMaximumError());

  using SizeType = typename OutputImageType::SizeType;
  using IndexType = typename OutputImageType::IndexType;
  using RegionType = typename OutputImageType::RegionType;

  int          ilevel, idim;
  unsigned int factors[ImageDimension];

  typename TInputImage::SizeType radius;

  RegionType requestedRegion;
  SizeType   requestedSize;
  IndexType  requestedIndex;

  // compute requested regions for lower levels
  for (ilevel = refLevel + 1; ilevel < static_cast<int>(this->GetNumberOfLevels()); ++ilevel)
  {
    requestedRegion = this->GetOutput(ilevel - 1)->GetRequestedRegion();
    requestedSize = requestedRegion.GetSize();
    requestedIndex = requestedRegion.GetIndex();

    for (idim = 0; idim < static_cast<int>(ImageDimension); ++idim)
    {
      factors[idim] = this->GetSchedule()[ilevel - 1][idim] / this->GetSchedule()[ilevel][idim];

      // take into account shrink component
      requestedSize[idim] *= static_cast<SizeValueType>(factors[idim]);
      requestedIndex[idim] *= static_cast<IndexValueType>(factors[idim]);

      // take into account smoothing component
      if (factors[idim] > 1)
      {
        oper.SetDirection(idim);
        oper.SetVariance(itk::Math::sqr(0.5 * static_cast<float>(factors[idim])));
        oper.CreateDirectional();
        radius[idim] = oper.GetRadius()[idim];
      }
      else
      {
        radius[idim] = 0;
      }
    }

    requestedRegion.SetSize(requestedSize);
    requestedRegion.SetIndex(requestedIndex);
    requestedRegion.PadByRadius(radius);
    requestedRegion.Crop(this->GetOutput(ilevel)->GetLargestPossibleRegion());

    this->GetOutput(ilevel)->SetRequestedRegion(requestedRegion);
  }

  // compute requested regions for higher levels
  for (ilevel = refLevel - 1; ilevel > -1; ilevel--)
  {
    requestedRegion = this->GetOutput(ilevel + 1)->GetRequestedRegion();
    requestedSize = requestedRegion.GetSize();
    requestedIndex = requestedRegion.GetIndex();

    for (idim = 0; idim < static_cast<int>(ImageDimension); ++idim)
    {
      factors[idim] = this->GetSchedule()[ilevel][idim] / this->GetSchedule()[ilevel + 1][idim];

      // take into account smoothing component
      if (factors[idim] > 1)
      {
        oper.SetDirection(idim);
        oper.SetVariance(itk::Math::sqr(0.5 * static_cast<float>(factors[idim])));
        oper.CreateDirectional();
        radius[idim] = oper.GetRadius()[idim];
      }
      else
      {
        radius[idim] = 0;
      }

      requestedSize[idim] -= static_cast<SizeValueType>(2 * radius[idim]);
      requestedIndex[idim] += radius[idim];

      // take into account shrink component
      requestedSize[idim] = static_cast<SizeValueType>(
        std::floor(static_cast<double>(requestedSize[idim]) / static_cast<double>(factors[idim])));
      if (requestedSize[idim] < 1)
      {
        requestedSize[idim] = 1;
      }
      requestedIndex[idim] = static_cast<IndexValueType>(
        std::ceil(static_cast<double>(requestedIndex[idim]) / static_cast<double>(factors[idim])));
    }

    requestedRegion.SetSize(requestedSize);
    requestedRegion.SetIndex(requestedIndex);
    requestedRegion.Crop(this->GetOutput(ilevel)->GetLargestPossibleRegion());

    this->GetOutput(ilevel)->SetRequestedRegion(requestedRegion);
  }
}

template <typename TInputImage, typename TOutputImage>
void
RecursiveMultiResolutionPyramidImageFilter<TInputImage, TOutputImage>::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();

  // get pointers to the input and output
  InputImagePointer inputPtr = const_cast<InputImageType *>(this->GetInput());
  if (!inputPtr)
  {
    itkExceptionMacro("Input has not been set.");
  }

  // compute baseIndex and baseSize
  using SizeType = typename OutputImageType::SizeType;
  using IndexType = typename OutputImageType::IndexType;
  using RegionType = typename OutputImageType::RegionType;

  unsigned int refLevel = this->GetNumberOfLevels() - 1;
  SizeType     baseSize = this->GetOutput(refLevel)->GetRequestedRegion().GetSize();
  IndexType    baseIndex = this->GetOutput(refLevel)->GetRequestedRegion().GetIndex();

  unsigned int idim;
  for (idim = 0; idim < ImageDimension; ++idim)
  {
    unsigned int factor = this->GetSchedule()[refLevel][idim];
    baseIndex[idim] *= static_cast<IndexValueType>(factor);
    baseSize[idim] *= static_cast<SizeValueType>(factor);
  }
  const RegionType baseRegion(baseIndex, baseSize);

  // compute requirements for the smoothing part
  using OutputPixelType = typename TOutputImage::PixelType;
  using OperatorType = GaussianOperator<OutputPixelType, ImageDimension>;

  OperatorType oper;

  typename TInputImage::SizeType radius;

  RegionType inputRequestedRegion = baseRegion;
  refLevel = 0;

  for (idim = 0; idim < TInputImage::ImageDimension; ++idim)
  {
    oper.SetDirection(idim);
    oper.SetVariance(itk::Math::sqr(0.5 * static_cast<float>(this->GetSchedule()[refLevel][idim])));
    oper.SetMaximumError(this->GetMaximumError());
    oper.CreateDirectional();
    radius[idim] = oper.GetRadius()[idim];
    if (this->GetSchedule()[refLevel][idim] <= 1)
    {
      radius[idim] = 0;
    }
  }

  inputRequestedRegion.PadByRadius(radius);

  // make sure the requested region is within the largest possible
  inputRequestedRegion.Crop(inputPtr->GetLargestPossibleRegion());

  // set the input requested region
  inputPtr->SetRequestedRegion(inputRequestedRegion);
}
} // namespace itk

#endif