1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkSimpleMultiResolutionImageRegistrationUI_h
#define itkSimpleMultiResolutionImageRegistrationUI_h
#include "itkMultiResolutionImageRegistrationMethod.h"
#include "itkCommand.h"
#include "itkArray.h"
#include "itkGradientDescentOptimizer.h"
// The following classes are examples of simple user interface
// that controls a MultiResolutionImageRegistrationMethod process
template <typename TRegistrator>
class SimpleMultiResolutionImageRegistrationUI
{
public:
SimpleMultiResolutionImageRegistrationUI(TRegistrator * ptr)
: m_Tag(0)
{
if (!ptr)
{
return;
}
m_Registrator = ptr;
typename itk::SimpleMemberCommand<SimpleMultiResolutionImageRegistrationUI>::Pointer iterationCommand =
itk::SimpleMemberCommand<SimpleMultiResolutionImageRegistrationUI>::New();
iterationCommand->SetCallbackFunction(this, &SimpleMultiResolutionImageRegistrationUI::StartNewLevel);
m_Tag = m_Registrator->AddObserver(itk::IterationEvent(), iterationCommand);
}
virtual ~SimpleMultiResolutionImageRegistrationUI()
{
if (m_Registrator)
{
m_Registrator->RemoveObserver(m_Tag);
}
}
virtual void
StartNewLevel()
{
std::cout << "--- Starting level " << m_Registrator->GetCurrentLevel() << std::endl;
}
protected:
typename TRegistrator::Pointer m_Registrator{};
unsigned long m_Tag{};
};
// This UI supports registration methods with gradient descent
// type optimizers.
// This UI allows the number of iterations and learning rate
// to be changes at each resolution level.
template <typename TRegistration>
class ITK_TEMPLATE_EXPORT SimpleMultiResolutionImageRegistrationUI2
: public SimpleMultiResolutionImageRegistrationUI<TRegistration>
{
public:
using Superclass = SimpleMultiResolutionImageRegistrationUI<
itk::MultiResolutionImageRegistrationMethod<itk::Image<float, 3>, itk::Image<float, 3>>>;
SimpleMultiResolutionImageRegistrationUI2(TRegistration * ptr)
: Superclass(ptr){};
~SimpleMultiResolutionImageRegistrationUI2() override = default;
void
SetNumberOfIterations(itk::Array<unsigned int> & iter)
{
m_NumberOfIterations = iter;
}
void
SetLearningRates(itk::Array<double> & rates)
{
m_LearningRates = rates;
}
void
StartNewLevel() override
{
// call the superclass's implementation
this->Superclass::StartNewLevel();
if (!this->m_Registrator)
{
return;
}
// Try to cast the optimizer to a gradient descent type,
// return if casting didn't work.
itk::GradientDescentOptimizer::Pointer optimizer =
dynamic_cast<itk::GradientDescentOptimizer *>(this->m_Registrator->GetModifiableOptimizer());
if (!optimizer)
{
return;
}
unsigned int level = this->m_Registrator->GetCurrentLevel();
if (m_NumberOfIterations.Size() >= level + 1)
{
optimizer->SetNumberOfIterations(m_NumberOfIterations[level]);
}
if (m_LearningRates.Size() >= level + 1)
{
optimizer->SetLearningRate(m_LearningRates[level]);
}
std::cout << " No. Iterations: " << optimizer->GetNumberOfIterations()
<< " Learning rate: " << optimizer->GetLearningRate() << std::endl;
}
private:
itk::Array<unsigned int> m_NumberOfIterations{};
itk::Array<double> m_LearningRates{};
};
#endif
|