1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkExpectationBasedPointSetToPointSetMetricv4_h
#define itkExpectationBasedPointSetToPointSetMetricv4_h
#include "itkPointSetToPointSetMetricv4.h"
#include "itkPointSet.h"
#include "itkImage.h"
namespace itk
{
/**
* \class ExpectationBasedPointSetToPointSetMetricv4
* \brief Computes an expectation-based metric between two point sets.
*
* This information-theoretic point set measure models each point set
* as a sum of Gaussians. To speed up computation, evaluation of the local
* value/derivative is done in a user-specified neighborhood using the k-d
* tree constructed in the superclass.
*
* Reference:
* Pluta J, Avants BB, Glynn S, Awate S, Gee JC, Detre JA,
* "Appearance and incomplete label matching for diffeomorphic template
* "based hippocampus segmentation", Hippocampus, 2009 Jun; 19(6):565-71.
*
* \ingroup ITKMetricsv4
*/
template <typename TFixedPointSet,
typename TMovingPointSet = TFixedPointSet,
class TInternalComputationValueType = double>
class ITK_TEMPLATE_EXPORT ExpectationBasedPointSetToPointSetMetricv4
: public PointSetToPointSetMetricv4<TFixedPointSet, TMovingPointSet, TInternalComputationValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(ExpectationBasedPointSetToPointSetMetricv4);
/** Standard class type aliases. */
using Self = ExpectationBasedPointSetToPointSetMetricv4;
using Superclass = PointSetToPointSetMetricv4<TFixedPointSet, TMovingPointSet, TInternalComputationValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** Method for creation through the object factory. */
itkSimpleNewMacro(Self);
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(ExpectationBasedPointSetToPointSetMetricv4);
/** Types transferred from the base class */
using typename Superclass::MeasureType;
using typename Superclass::DerivativeType;
using typename Superclass::LocalDerivativeType;
using typename Superclass::PointType;
using typename Superclass::PixelType;
using typename Superclass::CoordRepType;
using typename Superclass::PointIdentifier;
using typename Superclass::NeighborsIdentifierType;
/**
* Calculates the local metric value for a single point.
*/
MeasureType
GetLocalNeighborhoodValue(const PointType &, const PixelType & pixel = 0) const override;
/**
* Calculates the local value and derivative for a single point.
*/
void
GetLocalNeighborhoodValueAndDerivative(const PointType &,
MeasureType &,
LocalDerivativeType &,
const PixelType & pixel = 0) const override;
/**
* Each point is associated with a Gaussian characterized by m_PointSetSigma
* which provides a sense of scale for determining the similarity between two
* point sets. Default = 1.0.
*/
itkSetMacro(PointSetSigma, CoordRepType);
/** Get the point set sigma function */
itkGetConstMacro(PointSetSigma, CoordRepType);
/**
* Set the neighborhood size used to evaluate the measurement at each
* point. Default = 50.
*/
itkSetMacro(EvaluationKNeighborhood, unsigned int);
/**
* Get the neighborhood size used to evaluate the measurement at each
* point. Default = 50.
*/
itkGetConstMacro(EvaluationKNeighborhood, unsigned int);
void
Initialize() override;
/** Clone method will clone the existing instance of this type,
* including its internal member variables. */
typename LightObject::Pointer
InternalClone() const override;
protected:
ExpectationBasedPointSetToPointSetMetricv4();
~ExpectationBasedPointSetToPointSetMetricv4() override = default;
bool
RequiresFixedPointsLocator() const override
{
return false;
}
/** PrintSelf function */
void
PrintSelf(std::ostream & os, Indent indent) const override;
private:
using VectorType = typename PointType::VectorType;
using NeighborsIterator = typename NeighborsIdentifierType::const_iterator;
CoordRepType m_PointSetSigma{};
MeasureType m_PreFactor{};
MeasureType m_Denominator{};
unsigned int m_EvaluationKNeighborhood{ 50 };
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkExpectationBasedPointSetToPointSetMetricv4.hxx"
#endif
#endif
|