File: itkManifoldParzenWindowsPointSetFunction.h

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (212 lines) | stat: -rw-r--r-- 7,290 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*=========================================================================
 *
 *  Copyright NumFOCUS
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         https://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkManifoldParzenWindowsPointSetFunction_h
#define itkManifoldParzenWindowsPointSetFunction_h

#include "itkPointSetFunction.h"

#include "itkGaussianMembershipFunction.h"
#include "itkMatrix.h"
#include "itkPointSet.h"
#include "itkPointsLocator.h"
#include "itkVector.h"
#include "itkMultiThreaderBase.h"

#include <vector>

namespace itk
{

/** \class ManifoldParzenWindowsPointSetFunction
 * \brief Point set function based on n-dimensional parzen windowing.
 *
 * This class allows evaluating a function derived from a point set
 * by creating a continuous distribution using manifold parzen windowing.
 * Each point is associated with a Gaussian and local shape can
 * be encoded in the covariance matrix.
 *
 * \ingroup ITKMetricsv4
 */
template <typename TPointSet, typename TOutput = double, typename TCoordRep = double>
class ITK_TEMPLATE_EXPORT ManifoldParzenWindowsPointSetFunction : public PointSetFunction<TPointSet, TOutput, TCoordRep>
{
public:
  ITK_DISALLOW_COPY_AND_MOVE(ManifoldParzenWindowsPointSetFunction);

  using Self = ManifoldParzenWindowsPointSetFunction;
  using Superclass = PointSetFunction<TPointSet, TOutput, TCoordRep>;
  using Pointer = SmartPointer<Self>;
  using ConstPointer = SmartPointer<const Self>;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Extract dimension from output image. */
  static constexpr unsigned int PointDimension = TPointSet::PointDimension;

  using typename Superclass::InputPointSetType;
  using typename Superclass::InputPointType;

  /** Point set type alias support */
  using PointSetType = TPointSet;
  using PointType = typename PointSetType::PointType;
  using PointsContainer = typename PointSetType::PointsContainer;
  using PointIdentifier = typename PointsContainer::ElementIdentifier;

  /** Other type alias */
  using RealType = TOutput;
  using OutputType = TOutput;
  using CoordinateType = TCoordRep;
  using CoordRepType = CoordinateType;

  /** Typedef for points locator class to speed up finding neighboring points */
  using PointsLocatorType = PointsLocator<PointsContainer>;
  using NeighborsIdentifierType = typename PointsLocatorType::NeighborsIdentifierType;

  using GaussianType = typename Statistics::GaussianMembershipFunction<PointType>;
  using GaussianPointer = typename GaussianType::Pointer;
  using GaussianConstPointer = typename GaussianType::ConstPointer;
  using GaussianContainerType = std::vector<GaussianPointer>;
  using CovarianceMatrixType = typename GaussianType::CovarianceMatrixType;

  /** Helper functions */

  /**
   * Set the covariance K neighborhood.  For a given point the closest K
   * points are used to construct the corresponding covariance reflecting
   * the local point set structure.  Default = 5.
   */
  itkSetMacro(CovarianceKNeighborhood, unsigned int);

  /** Get the covariance k neighborhood size.  Default = 5.*/
  itkGetConstMacro(CovarianceKNeighborhood, unsigned int);

  /**
   * Set the evaluation K neighborhood.  To evaluate the manifold parzen
   * windows function, one could sum the value contributed by each Gaussian or
   * to speed calculation, we could sum the value contributed by the nearest
   * K Gaussians.  Default = 50.
   */
  itkSetMacro(EvaluationKNeighborhood, unsigned int);

  /** Get the evaluation K neighborhood.  Default = 50.*/
  itkGetConstMacro(EvaluationKNeighborhood, unsigned int);

  /**
   * Set the regularization sigma.  To avoid singular covariance matrices,
   * a regularization sigma value is added to the diagonal.  Default = 1.0.
   */
  itkSetMacro(RegularizationSigma, RealType);

  /** Get the regularization sigma.  Default = 1.0. */
  itkGetConstMacro(RegularizationSigma, RealType);

  /**
   * Set the kernel sigma.  In constructing the covariance from k neighbors,
   * a Gaussian is used to weight more strongly the closest neighbors.  This
   * defines that weighting Gaussian.  Default = 1.0.
   */
  itkSetMacro(KernelSigma, RealType);

  /** Get the kernel sigma.  Default = 1.0. */
  itkGetConstMacro(KernelSigma, RealType);

  /**
   * Normalize covariance by the sum of the weights of the nearest neighbors.
   * Default = true.
   */
  itkSetMacro(Normalize, bool);

  /**
   * Normalize covariance by the sum of the weights of the nearest neighbors.
   * Default = true.
   */
  itkGetConstMacro(Normalize, bool);

  /**
   * Normalize covariance by the sum of the weights of the nearest neighbors.
   * Default = true.
   */
  itkBooleanMacro(Normalize);

  /**
   * Construct covariances using the local neighborhood point set structure.
   * Otherwise, the Gaussian for each point is characterized by the value
   * of m_RegularizationSigma.  Default = true.
   */
  itkSetMacro(UseAnisotropicCovariances, bool);

  /**
   * Construct covariances using the local neighborhood point set structure.
   * Otherwise, the Gaussian for each point is characterized by the value
   * of m_RegularizationSigma.  Default = true.
   */
  itkGetConstMacro(UseAnisotropicCovariances, bool);

  /**
   * Construct covariances using the local neighborhood point set structure.
   * Otherwise, the Gaussian for each point is characterized by the value
   * of m_RegularizationSigma.  Default = true.
   */
  itkBooleanMacro(UseAnisotropicCovariances);

  /** Set the input point set */
  void
  SetInputPointSet(const InputPointSetType *) override;

  /** Evaluate function value at specified point */
  TOutput
  Evaluate(const InputPointType &) const override;

  /** Get Gaussian corresponding to a specific point */
  GaussianConstPointer GetGaussian(PointIdentifier) const;

  /** Get the points locator describing the point set neighborhood */
  itkGetModifiableObjectMacro(PointsLocator, PointsLocatorType);

protected:
  ManifoldParzenWindowsPointSetFunction();
  ~ManifoldParzenWindowsPointSetFunction() override = default;
  void
  PrintSelf(std::ostream & os, Indent indent) const override;

  void
  GenerateData();

private:
  typename PointsLocatorType::Pointer m_PointsLocator{};

  unsigned int m_CovarianceKNeighborhood{ 5 };
  unsigned int m_EvaluationKNeighborhood{ 50 };
  RealType     m_RegularizationSigma{};
  RealType     m_KernelSigma{};

  GaussianContainerType m_Gaussians{};
  bool                  m_Normalize{ true };
  bool                  m_UseAnisotropicCovariances{ true };

  MultiThreaderBase::Pointer m_MultiThreader{};
};

} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#  include "itkManifoldParzenWindowsPointSetFunction.hxx"
#endif

#endif