1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkPointSetToPointSetMetricWithIndexv4_h
#define itkPointSetToPointSetMetricWithIndexv4_h
#include "itkObjectToObjectMetric.h"
#include "itkFixedArray.h"
#include "itkPointsLocator.h"
#include "itkPointSet.h"
namespace itk
{
/** \class PointSetToPointSetMetricWithIndexv4
* \brief Computes similarity between two point sets.
*
* This class is templated over the type of the two point-sets. It
* expects a Transform to be plugged in for each of fixed and moving
* point sets. The transforms default to IdentityTransform types. This particular
* class is the base class for a hierarchy of point-set to point-set metrics.
*
* This class computes a value that measures the similarity between the fixed
* point-set and the moving point-set in the moving domain. The fixed point set
* is transformed into the virtual domain by computing the inverse of the
* fixed transform, then transformed into the moving domain using the
* moving transform.
*
* Since the \c PointSet class permits each \c Point to be associated with a
* \c PixelType, there are potential applications which could make use of
* this additional information. For example, the derived \c LabeledPointSetToPointSetMetric
* class uses the \c PixelType as a \c LabelEnum for estimating total metric values
* and gradients from the individual label-wise point subset metric and derivatives
*
* If a virtual domain is not defined by the user, one of two things happens:
* 1) If the moving transform is a global type, then the virtual domain is
* left undefined and every point is considered to be within the virtual domain.
* 2) If the moving transform is a local-support type, then the virtual domain
* is taken during initialization from the moving transform displacement field,
* and all fixed points are verified to be within the virtual domain after
* transformation by the inverse fixed transform. Points outside the virtual
* domain are not used. See GetNumberOfValidPoints() to verify how many fixed
* points were used during evaluation.
*
* See ObjectToObjectMetric documentation for more discussion on the virtual domain.
*
* \note When used with an RegistrationParameterScalesEstimator estimator, a VirtualDomainPointSet
* must be defined and assigned to the estimator, for use in shift estimation.
* The virtual domain point set can be retrieved from the metric using the
* GetVirtualTransformedPointSet() method.
*
* \ingroup ITKMetricsv4
*/
template <typename TFixedPointSet,
typename TMovingPointSet = TFixedPointSet,
class TInternalComputationValueType = double>
class ITK_TEMPLATE_EXPORT PointSetToPointSetMetricWithIndexv4
: public ObjectToObjectMetric<TFixedPointSet::PointDimension,
TMovingPointSet::PointDimension,
Image<TInternalComputationValueType, TFixedPointSet::PointDimension>,
TInternalComputationValueType>
{
public:
ITK_DISALLOW_COPY_AND_MOVE(PointSetToPointSetMetricWithIndexv4);
/** Standard class type aliases. */
using Self = PointSetToPointSetMetricWithIndexv4;
using Superclass = ObjectToObjectMetric<TFixedPointSet::PointDimension,
TMovingPointSet::PointDimension,
Image<TInternalComputationValueType, TFixedPointSet::PointDimension>,
TInternalComputationValueType>;
using Pointer = SmartPointer<Self>;
using ConstPointer = SmartPointer<const Self>;
/** \see LightObject::GetNameOfClass() */
itkOverrideGetNameOfClassMacro(PointSetToPointSetMetricWithIndexv4);
/** Type of the measure. */
using typename Superclass::MeasureType;
/** Type of the parameters. */
using typename Superclass::ParametersType;
using typename Superclass::ParametersValueType;
using typename Superclass::NumberOfParametersType;
/** Type of the derivative. */
using typename Superclass::DerivativeType;
/** Transform types from Superclass*/
using typename Superclass::FixedTransformType;
using typename Superclass::FixedTransformPointer;
using typename Superclass::FixedInputPointType;
using typename Superclass::FixedOutputPointType;
using typename Superclass::FixedTransformParametersType;
using typename Superclass::MovingTransformType;
using typename Superclass::MovingTransformPointer;
using typename Superclass::MovingInputPointType;
using typename Superclass::MovingOutputPointType;
using typename Superclass::MovingTransformParametersType;
using typename Superclass::JacobianType;
using typename Superclass::FixedTransformJacobianType;
using typename Superclass::MovingTransformJacobianType;
using DisplacementFieldTransformType = typename Superclass::MovingDisplacementFieldTransformType;
using ObjectType = typename Superclass::ObjectType;
/** Dimension type */
using typename Superclass::DimensionType;
/** Type of the fixed point set. */
using FixedPointSetType = TFixedPointSet;
using FixedPointType = typename TFixedPointSet::PointType;
using FixedPixelType = typename TFixedPointSet::PixelType;
using FixedPointsContainer = typename TFixedPointSet::PointsContainer;
static constexpr DimensionType FixedPointDimension = Superclass::FixedDimension;
/** Type of the moving point set. */
using MovingPointSetType = TMovingPointSet;
using MovingPointType = typename TMovingPointSet::PointType;
using MovingPixelType = typename TMovingPointSet::PixelType;
using MovingPointsContainer = typename TMovingPointSet::PointsContainer;
static constexpr DimensionType MovingPointDimension = Superclass::MovingDimension;
/**
* typedefs for the data types used in the point set metric calculations.
* It is assumed that the constants of the fixed point set, such as the
* point dimension, are the same for the "common space" in which the metric
* calculation occurs.
*/
static constexpr DimensionType PointDimension = Superclass::FixedDimension;
using PointType = FixedPointType;
using PixelType = FixedPixelType;
using CoordinateType = typename PointType::CoordRepType;
using CoordRepType = CoordinateType;
using PointsContainer = FixedPointsContainer;
using PointsConstIterator = typename PointsContainer::ConstIterator;
using PointIdentifier = typename PointsContainer::ElementIdentifier;
/** Typedef for points locator class to speed up finding neighboring points */
using PointsLocatorType = PointsLocator<PointsContainer>;
using NeighborsIdentifierType = typename PointsLocatorType::NeighborsIdentifierType;
using FixedTransformedPointSetType = PointSet<FixedPixelType, Self::PointDimension>;
using MovingTransformedPointSetType = PointSet<MovingPixelType, Self::PointDimension>;
using DerivativeValueType = typename DerivativeType::ValueType;
using LocalDerivativeType = FixedArray<DerivativeValueType, Self::PointDimension>;
/** Types for the virtual domain */
using VirtualImageType = typename Superclass::VirtualImageType;
using typename Superclass::VirtualImagePointer;
using typename Superclass::VirtualPixelType;
using typename Superclass::VirtualRegionType;
using typename Superclass::VirtualSizeType;
using typename Superclass::VirtualSpacingType;
using VirtualOriginType = typename Superclass::VirtualPointType;
using typename Superclass::VirtualPointType;
using typename Superclass::VirtualDirectionType;
using VirtualRadiusType = typename Superclass::VirtualSizeType;
using typename Superclass::VirtualIndexType;
using typename Superclass::VirtualPointSetType;
using typename Superclass::VirtualPointSetPointer;
/** Set fixed point set*/
void
SetFixedObject(const ObjectType * object) override
{
auto * pointSet = dynamic_cast<FixedPointSetType *>(const_cast<ObjectType *>(object));
if (pointSet != nullptr)
{
this->SetFixedPointSet(pointSet);
}
else
{
itkExceptionMacro("Incorrect object type. Should be a point set.");
}
}
/** Set moving point set*/
void
SetMovingObject(const ObjectType * object) override
{
auto * pointSet = dynamic_cast<MovingPointSetType *>(const_cast<ObjectType *>(object));
if (pointSet != nullptr)
{
this->SetMovingPointSet(pointSet);
}
else
{
itkExceptionMacro("Incorrect object type. Should be a point set.");
}
}
/** Get/Set the fixed pointset. */
itkSetConstObjectMacro(FixedPointSet, FixedPointSetType);
itkGetConstObjectMacro(FixedPointSet, FixedPointSetType);
/** Get the fixed transformed point set. */
itkGetModifiableObjectMacro(FixedTransformedPointSet, FixedTransformedPointSetType);
/** Get/Set the moving point set. */
itkSetConstObjectMacro(MovingPointSet, MovingPointSetType);
itkGetConstObjectMacro(MovingPointSet, MovingPointSetType);
/** Get the moving transformed point set. */
itkGetModifiableObjectMacro(MovingTransformedPointSet, MovingTransformedPointSetType);
/**
* For now return the number of points used in the value/derivative calculations.
*/
SizeValueType
GetNumberOfComponents() const;
/**
* This method returns the value of the metric based on the current
* transformation(s). This function can be redefined in derived classes
* but many point set metrics follow the same structure---one iterates
* through the points and, for each point a metric value is calculated.
* The summation of these individual point metric values gives the total
* value of the metric. Note that this might not be applicable to all
* point set metrics. For those cases, the developer will have to redefine
* the GetValue() function.
*/
MeasureType
GetValue() const override;
/**
* This method returns the derivative based on the current
* transformation(s). This function can be redefined in derived classes
* but many point set metrics follow the same structure---one iterates
* through the points and, for each point a derivative is calculated.
* The set of all these local derivatives constitutes the total derivative.
* Note that this might not be applicable to all point set metrics. For
* those cases, the developer will have to redefine the GetDerivative()
* function.
*/
void
GetDerivative(DerivativeType &) const override;
/**
* This method returns the derivative and value based on the current
* transformation(s). This function can be redefined in derived classes
* but many point set metrics follow the same structure---one iterates
* through the points and, for each point a derivative and value is calculated.
* The set of all these local derivatives/values constitutes the total
* derivative and value. Note that this might not be applicable to all
* point set metrics. For those cases, the developer will have to redefine
* the GetValue() and GetDerivative() functions.
*/
void
GetValueAndDerivative(MeasureType &, DerivativeType &) const override;
/**
* Get the virtual point set, derived from the fixed point set.
* If the virtual point set has not yet been derived, it will be
* in this call. */
const VirtualPointSetType *
GetVirtualTransformedPointSet() const;
/**
* Initialize the metric by making sure that all the components
* are present and plugged together correctly.
*/
void
Initialize() override;
bool
SupportsArbitraryVirtualDomainSamples() const override
{
/* An arbitrary point in the virtual domain will not always
* correspond to a point within either point set. */
return false;
}
/**
* By default, the point set metric derivative for a displacement field transform
* is stored by saving the gradient for every voxel in the displacement field (see
* the function StorePointDerivative()). Since the "fixed points" will typically
* constitute a sparse set, this means that the field will have zero gradient values
* at every voxel that doesn't have a corresponding point. This might cause additional
* computation time for certain transforms (e.g. B-spline SyN). To avoid this, this
* option permits storing the point derivative only at the fixed point locations.
* If this variable is set to false, then the derivative array will be of length
* = PointDimension * m_FixedPointSet->GetNumberOfPoints().
*/
itkSetMacro(StoreDerivativeAsSparseFieldForLocalSupportTransforms, bool);
itkGetConstMacro(StoreDerivativeAsSparseFieldForLocalSupportTransforms, bool);
itkBooleanMacro(StoreDerivativeAsSparseFieldForLocalSupportTransforms);
/**
*
*/
itkSetMacro(CalculateValueAndDerivativeInTangentSpace, bool);
itkGetConstMacro(CalculateValueAndDerivativeInTangentSpace, bool);
itkBooleanMacro(CalculateValueAndDerivativeInTangentSpace);
protected:
PointSetToPointSetMetricWithIndexv4();
~PointSetToPointSetMetricWithIndexv4() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
typename FixedPointSetType::ConstPointer m_FixedPointSet{};
mutable typename FixedTransformedPointSetType::Pointer m_FixedTransformedPointSet{};
mutable typename PointsLocatorType::Pointer m_FixedTransformedPointsLocator{};
typename MovingPointSetType::ConstPointer m_MovingPointSet{};
mutable typename MovingTransformedPointSetType::Pointer m_MovingTransformedPointSet{};
mutable typename PointsLocatorType::Pointer m_MovingTransformedPointsLocator{};
/** Holds the fixed points after transformation into virtual domain. */
mutable VirtualPointSetPointer m_VirtualTransformedPointSet{};
/**
* Bool set by derived classes on whether the point set data (i.e. \c PixelType)
* should be used. Default = false.
*/
bool m_UsePointSetData{};
/**
* Flag to calculate value and/or derivative at tangent space. This is needed
* for the diffeomorphic registration methods. The fixed and moving points are
* warped to the virtual domain where the metric is calculated. Derived point
* set metrics might have associated gradient information which will need to be
* warped if this flag is true. Default = false.
*/
bool m_CalculateValueAndDerivativeInTangentSpace{};
/**
* Prepare point sets for use. */
virtual void
InitializePointSets() const;
/**
* Initialize to prepare for a particular iteration, generally
* an iteration of optimization. Distinct from Initialize()
* which is a one-time initialization. */
virtual void
InitializeForIteration() const;
/**
* Determine the number of valid fixed points. A fixed point
* is valid if, when transformed into the virtual domain using
* the inverse of the FixedTransform, it is within the defined
* virtual domain bounds. */
virtual SizeValueType
CalculateNumberOfValidFixedPoints() const;
/** Helper method allows for code reuse while skipping the metric value
* calculation when appropriate */
void
CalculateValueAndDerivative(MeasureType & calculatedValue, DerivativeType & derivative, bool calculateValue) const;
/**
* Warp the fixed point set into the moving domain based on the fixed transform,
* passing through the virtual domain and storing a virtual domain set.
* Note that the warped moving point set is of type FixedPointSetType since the transform
* takes the points from the fixed to the moving domain.
*/
void
TransformFixedAndCreateVirtualPointSet() const;
/**
* Warp the moving point set based on the moving transform. Note that the
* warped moving point set is of type FixedPointSetType since the transform
* takes the points from the moving to the fixed domain.
* FIXME: needs update.
*/
void
TransformMovingPointSet() const;
/**
* Build point locators for the fixed and moving point sets to speed up
* derivative and value calculations.
*/
void
InitializePointsLocators() const;
/**
* Store a derivative from a single point in a field.
* Only relevant when active transform has local support.
*/
void
StorePointDerivative(const VirtualPointType &, const DerivativeType &, DerivativeType &) const;
using typename Superclass::MetricCategoryType;
/** Get metric category */
MetricCategoryType
GetMetricCategory() const override
{
return MetricCategoryType::POINT_SET_METRIC;
}
virtual bool
RequiresMovingPointsLocator() const
{
return true;
};
virtual bool
RequiresFixedPointsLocator() const
{
return true;
};
/**
* Function to be defined in the appropriate derived classes. Calculates
* the local metric value for a single point. The \c PixelType may or
* may not be used. See class description for further explanation.
*/
virtual MeasureType
GetLocalNeighborhoodValueWithIndex(const PointIdentifier &, const PointType &, const PixelType & pixel) const = 0;
/**
* Function to be defined in the appropriate derived classes. Calculates
* the local metric value for a single point. The \c PixelType may or
* may not be used. See class description for further explanation.
* Default implementation calls GetLocalNeighborhoodValueAndDerivative.
*/
virtual LocalDerivativeType
GetLocalNeighborhoodDerivativeWithIndex(const PointIdentifier &, const PointType &, const PixelType & pixel) const;
/**
* Function to be defined in the appropriate derived classes. Calculates
* the local metric value for a single point. The \c PixelType may or
* may not be used. See class description for further explanation.
*/
virtual void
GetLocalNeighborhoodValueAndDerivativeWithIndex(const PointIdentifier &,
const PointType &,
MeasureType &,
LocalDerivativeType &,
const PixelType & pixel) const = 0;
private:
mutable bool m_MovingTransformPointLocatorsNeedInitialization{};
mutable bool m_FixedTransformPointLocatorsNeedInitialization{};
// Flag to keep track of whether a warning has already been issued
// regarding the number of valid points.
mutable bool m_HaveWarnedAboutNumberOfValidPoints{};
// Flag to store derivatives at fixed point locations with the rest being zero gradient
// (default = true).
bool m_StoreDerivativeAsSparseFieldForLocalSupportTransforms{};
mutable ModifiedTimeType m_MovingTransformedPointSetTime{};
mutable ModifiedTimeType m_FixedTransformedPointSetTime{};
// Create ranges over the point set for multithreaded computation of value and derivatives
using PointIdentifierPair = std::pair<PointIdentifier, PointIdentifier>;
using PointIdentifierRanges = std::vector<PointIdentifierPair>;
const PointIdentifierRanges
CreateRanges() const;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkPointSetToPointSetMetricWithIndexv4.hxx"
#endif
#endif
|