File: extras.py

package info (click to toggle)
insighttoolkit5 5.4.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 704,588 kB
  • sloc: cpp: 784,579; ansic: 628,724; xml: 44,704; fortran: 34,250; python: 22,934; sh: 4,078; pascal: 2,636; lisp: 2,158; makefile: 461; yacc: 328; asm: 205; perl: 203; lex: 146; tcl: 132; javascript: 98; csh: 81
file content (2401 lines) | stat: -rw-r--r-- 82,956 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
# ==========================================================================
#
#   Copyright NumFOCUS
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#          https://www.apache.org/licenses/LICENSE-2.0.txt
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
#
# ==========================================================================*/

import enum
import re
from typing import Optional, Union, Dict, Any, List, Tuple, Sequence, TYPE_CHECKING
from sys import stderr as system_error_stream

import numpy as np

try:
    from numpy.typing import ArrayLike
except ImportError:
    from numpy import ndarray as ArrayLike
import warnings
from sys import stderr as system_error_stream
import os
import builtins

fileiotype = Union[str, bytes, os.PathLike]

import itk.support.types as itkt

from .helpers import wasm_type_from_image_type, image_type_from_wasm_type
from .helpers import wasm_type_from_mesh_type, mesh_type_from_wasm_type, python_to_js
from .helpers import wasm_type_from_pointset_type, pointset_type_from_wasm_type
from .helpers import snake_to_camel_case

from .xarray import xarray_from_image, image_from_xarray

if TYPE_CHECKING:
    try:
        import vtk
    except ImportError:
        pass


__all__ = [
    "output",
    "image",
    "set_nthreads",
    "get_nthreads",
    "echo",
    "size",
    "physical_size",
    "spacing",
    "origin",
    "index",
    "region",
    "GetArrayFromImage",
    "array_from_image",
    "GetArrayViewFromImage",
    "array_view_from_image",
    "GetImageFromArray",
    "image_from_array",
    "GetImageViewFromArray",
    "image_view_from_array",
    "array_from_vector_container",
    "array_view_from_vector_container",
    "vector_container_from_array",
    "GetArrayFromVnlVector",
    "array_from_vnl_vector",
    "GetVnlVectorFromArray",
    "vnl_vector_from_array",
    "GetArrayViewFromVnlVector",
    "array_view_from_vnl_vector",
    "GetVnlMatrixFromArray",
    "vnl_matrix_from_array",
    "GetArrayFromVnlMatrix",
    "array_from_vnl_matrix",
    "GetArrayViewFromVnlMatrix",
    "array_view_from_vnl_matrix",
    "GetArrayFromMatrix",
    "array_from_matrix",
    "GetMatrixFromArray",
    "matrix_from_array",
    "xarray_from_image",
    "image_from_xarray",
    "vtk_image_from_image",
    "image_from_vtk_image",
    "dict_from_image",
    "image_from_dict",
    "image_intensity_min_max",
    "imwrite",
    "imread",
    "meshwrite",
    "meshread",
    "mesh_from_dict",
    "dict_from_mesh",
    "pointset_from_dict",
    "dict_from_pointset",
    "polyline_from_dict",
    "dict_from_polyline",
    "transform_from_dict",
    "dict_from_transform",
    "transformwrite",
    "transformread",
    "search",
    "set_inputs",
    "templated_class",
    "pipeline",
    "auto_pipeline",
    "down_cast",
    "template",
    "class_",
    "ctype",
    "python_type",
    "range",
    "TemplateTypeError",
]


def output(input):
    """
    If input object has attribute "GetOutput()" then return an itk image,
    otherwise this function simply returns the input value
    """
    if hasattr(input, "GetOutput"):
        return input.GetOutput()
    return input


def image(input):
    warnings.warn(
        "WrapITK warning: itk.image() is deprecated. " "Use itk.output() instead."
    )
    return output(input)


def set_nthreads(number_of_threads: int) -> None:
    """
    Support convenient set of the number of threads.
    Use example (in python):
        import itk
        itk.set_nthreads(4)  ## use 4 threads
    """
    assert number_of_threads > 0, (
        "Please set a positive number of threads instead of %d" % number_of_threads
    )

    import itk

    threader = itk.MultiThreaderBase.New()
    threader.SetGlobalDefaultNumberOfThreads(number_of_threads)


def get_nthreads() -> int:
    """
    Get the number of threads
    """
    import itk

    threader = itk.MultiThreaderBase.New()
    return threader.GetGlobalDefaultNumberOfThreads()


def echo(obj, f=system_error_stream) -> None:
    """Print an object to stream

    If the object has a method Print(), this method is used.
    repr(obj) is used otherwise
    """
    print(f, obj)


def size(image_or_filter: "itkt.ImageOrImageSource") -> Sequence[int]:
    """Return the size of an image, or of the output image of a filter

    This method take care of updating the needed information
    """
    # we don't need the entire output, only its size

    import itk

    image_or_filter.UpdateOutputInformation()
    img = itk.output(image_or_filter)
    return img.GetLargestPossibleRegion().GetSize()


def physical_size(image_or_filter: "itkt.ImageOrImageSource") -> Sequence[float]:
    """Return the physical size of an image, or of the output image of a filter

    This method take care of updating the needed information
    """
    # required because range is overloaded in this module
    from builtins import range

    spacing_ = spacing(image_or_filter)
    size_ = size(image_or_filter)
    result = []
    for i in range(0, spacing_.Size()):
        result.append(spacing_.GetElement(i) * size_.GetElement(i))
    return result


def spacing(image_or_filter: "itkt.ImageOrImageSource") -> Sequence[float]:
    """Return the spacing of an image, or of the output image of a filter

    This method take care of updating the needed information
    """
    import itk

    # we don't need the entire output, only its size
    image_or_filter.UpdateOutputInformation()
    img = itk.output(image_or_filter)
    return img.GetSpacing()


def origin(image_or_filter: "itkt.ImageOrImageSource") -> Sequence[float]:
    """Return the origin of an image, or of the output image of a filter

    This method take care of updating the needed information
    """
    import itk

    # we don't need the entire output, only its size
    image_or_filter.UpdateOutputInformation()
    img = itk.output(image_or_filter)
    return img.GetOrigin()


def index(image_or_filter: "itkt.ImageOrImageSource") -> Sequence[int]:
    """Return the index of an image, or of the output image of a filter

    This method take care of updating the needed information
    """
    import itk

    # we don't need the entire output, only its size
    image_or_filter.UpdateOutputInformation()
    img = itk.output(image_or_filter)
    return img.GetLargestPossibleRegion().GetIndex()


def region(image_or_filter: "itkt.ImageOrImageSource") -> "itkt.ImageRegion":
    """Return the region of an image, or of the output image of a filter

    This method take care of updating the needed information
    """
    import itk

    # we don't need the entire output, only its size
    image_or_filter.UpdateOutputInformation()
    img = itk.output(image_or_filter)
    return img.GetLargestPossibleRegion()


def _get_itk_pixelid(numpy_array_type):
    """Returns a ITK PixelID given a numpy array."""

    import itk

    def _long_type():
        if os.name == "nt":
            return itk.ULL
        else:
            return itk.UL

    # This is a Mapping from numpy array types to itk pixel types.
    _np_itk = {
        np.dtype(np.uint8): itk.UC,
        np.dtype(np.uint16): itk.US,
        np.dtype(np.uint32): itk.UI,
        np.dtype(np.uint64): _long_type(),
        np.dtype(np.int8): itk.SC,
        np.dtype(np.int16): itk.SS,
        np.dtype(np.int32): itk.SI,
        np.dtype(np.int64): itk.SL,
        np.dtype(np.float32): itk.F,
        np.dtype(np.float64): itk.D,
        np.dtype(np.complex64): itk.complex[itk.F],
        np.dtype(np.complex128): itk.complex[itk.D],
    }
    try:
        return _np_itk[numpy_array_type.dtype]
    except KeyError as e:
        raise e


def _GetArrayFromImage(
    image_or_filter, function_name: str, keep_axes: bool, update: bool, ttype
) -> np.ndarray:
    """Get an Array with the content of the image buffer"""
    # Finds the image type
    import itk

    img = itk.output(image_or_filter)
    if ttype is not None:
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            ImageType = ttype[0]
        else:
            ImageType = ttype
    else:
        ImageType = img.__class__
    keys = [k for k in itk.PyBuffer.keys() if k[0] == ImageType]
    if len(keys) == 0:
        raise RuntimeError("No suitable template parameter can be found.")
    # Create a numpy array of the type of the input image
    templatedFunction = getattr(itk.PyBuffer[keys[0]], function_name)
    return templatedFunction(img, keep_axes, update)


def GetArrayFromImage(
    image_or_filter: "itkt.ImageOrImageSource",
    keep_axes: bool = False,
    update: bool = True,
    ttype=None,
) -> np.ndarray:
    """Get an array with the content of the image buffer.

    When *keep_axes* is *False*, the NumPy array will have C-order
    indexing. This is the reverse of how indices are specified in ITK,
    i.e. k,j,i versus i,j,k. However C-order indexing is expected by most
    algorithms in NumPy / SciPy.

    This is a deep copy of the image buffer and is completely safe and without potential side effects.
    """
    return _GetArrayFromImage(
        image_or_filter, "GetArrayFromImage", keep_axes, update, ttype
    )


array_from_image = GetArrayFromImage


def GetArrayViewFromImage(
    image_or_filter: "itkt.ImageOrImageSource",
    keep_axes: bool = False,
    update: bool = True,
    ttype=None,
) -> np.ndarray:
    """Get an array view with the content of the image buffer.

    When *keep_axes* is *False*, the NumPy array will have C-order
    indexing. This is the reverse of how indices are specified in ITK,
    i.e. k,j,i versus i,j,k. However C-order indexing is expected by most
    algorithms in NumPy / SciPy.
    """
    return _GetArrayFromImage(
        image_or_filter, "GetArrayViewFromImage", keep_axes, update, ttype
    )


array_view_from_image = GetArrayViewFromImage


def _GetImageFromArray(
    arr: ArrayLike,
    function_name: str,
    is_vector: bool,
    ttype,
    need_contiguous: bool = True,
):
    """Get an ITK image from a Python array."""
    import itk

    # Verify inputs
    if not isinstance(arr, np.ndarray):
        arr = np.asarray(arr)

    if ttype is not None:
        if is_vector:
            raise RuntimeError("Cannot specify both `is_vector` and `ttype`.")
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            ImageType = ttype[0]
        else:
            ImageType = ttype
        if type(itk.template(ImageType)) != tuple or len(itk.template(ImageType)) < 2:
            raise RuntimeError("Cannot determine pixel type from supplied ttype.")
        is_vector = (
            type(itk.template(ImageType)[1][0]) != itk.support.types.itkCType
            or itk.template(ImageType)[0] == itk.VectorImage
        )
    else:
        PixelType = _get_itk_pixelid(arr)
        Dimension = arr.ndim
        if is_vector:
            Dimension = arr.ndim - 1
            if arr.flags["C_CONTIGUOUS"]:
                VectorDimension = arr.shape[-1]
            else:
                VectorDimension = arr.shape[0]
            if PixelType == itk.UC:
                if VectorDimension == 3:
                    ImageType = itk.Image[itk.RGBPixel[itk.UC], Dimension]
                elif VectorDimension == 4:
                    ImageType = itk.Image[itk.RGBAPixel[itk.UC], Dimension]
                else:
                    ImageType = itk.VectorImage[PixelType, Dimension]
            else:
                ImageType = itk.VectorImage[PixelType, Dimension]
        else:
            ImageType = itk.Image[PixelType, Dimension]
    keys = [k for k in itk.PyBuffer.keys() if k[0] == ImageType]
    if len(keys) == 0:
        raise RuntimeError(
            """No suitable template parameter can be found.

Please specify an output type via the 'ttype' keyword parameter."""
        )
    templatedFunction = getattr(itk.PyBuffer[keys[0]], function_name)
    if function_name == "GetImageViewFromArray":
        return templatedFunction(arr, is_vector, need_contiguous)
    else:
        return templatedFunction(arr, is_vector)


def GetImageFromArray(
    arr: ArrayLike, is_vector: bool = False, ttype=None
) -> "itkt.ImageBase":
    """Get an ITK image from a Python array.

    This is a deep copy of the NumPy array buffer and is completely safe without potential
    side effects.

    If is_vector is True, then a 3D array will be treated as a 2D vector image,
    otherwise it will be treated as a 3D image.

    If the array uses Fortran-order indexing, i.e. i,j,k, the Image Size
    will have the same dimensions as the array shape. If the array uses
    C-order indexing, i.e. k,j,i, the image Size will have the dimensions
    reversed from the array shape.

    Therefore, since the *np.transpose* operator on a 2D array simply
    inverts the indexing scheme, the Image representation will be the
    same for an array and its transpose. If flipping is desired, see
    *np.reshape*.

    ttype can be used te specify a specific itk.Image type.
    """
    return _GetImageFromArray(arr, "GetImageFromArray", is_vector, ttype)


image_from_array = GetImageFromArray


def GetImageViewFromArray(
    arr: ArrayLike, is_vector: bool = False, ttype=None, need_contiguous=True
) -> "itkt.ImageBase":
    """Get an ITK image view (shared pixel buffer memory) from a Python array.

    If is_vector is True, then a 3D array will be treated as a 2D vector image,
    otherwise it will be treated as a 3D image.

    If the array uses Fortran-order indexing, i.e. i,j,k, the Image Size
    will have the same dimensions as the array shape. If the array uses
    C-order indexing, i.e. k,j,i, the image Size will have the dimensions
    reversed from the array shape.

    Therefore, since the *np.transpose* operator on a 2D array simply
    inverts the indexing scheme, the Image representation will be the
    same for an array and its transpose. If flipping is desired, see
    *np.reshape*.

    By default, a warning is issued if this function is called on a non-contiguous
    array, since a copy is performed and care must be taken to keep a reference
    to the copied array. This warning can be suppressed with need_contiguous=False
    """
    return _GetImageFromArray(
        arr, "GetImageViewFromArray", is_vector, ttype, need_contiguous=need_contiguous
    )


image_view_from_array = GetImageViewFromArray


def array_from_vector_container(
    container: "itkt.VectorContainer", ttype=None
) -> np.ndarray:
    """Get an Array with the content of the vector container"""
    import itk

    container_template = itk.template(container)
    IndexType = container_template[1][0]

    # Find container data type
    if ttype is not None:
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            DataType = ttype[0]
        else:
            DataType = ttype
    else:
        DataType = container_template[1][1]
    keys = [k for k in itk.PyVectorContainer.keys() if k == (IndexType, DataType)]
    if len(keys) == 0:
        raise RuntimeError("No suitable template parameter can be found.")
    # Create numpy array of the type of the input container
    return itk.PyVectorContainer[keys[0]].array_from_vector_container(container)


def array_view_from_vector_container(
    container: "itkt.VectorContainer", ttype=None
) -> np.ndarray:
    """Get an Array view with the content of the vector container"""
    import itk

    container_template = itk.template(container)
    IndexType = container_template[1][0]

    # Find container type
    if ttype is not None:
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            DataType = ttype[0]
        else:
            DataType = ttype
    else:
        DataType = container_template[1][1]
    keys = [k for k in itk.PyVectorContainer.keys() if k == (IndexType, DataType)]
    if len(keys) == 0:
        raise RuntimeError("No suitable template parameter can be found.")
    # Create numpy array of the type of the input container
    return itk.PyVectorContainer[keys[0]].array_view_from_vector_container(container)


def vector_container_from_array(arr: ArrayLike, ttype=None) -> "itkt.VectorContainer":
    """Get a vector container from a Python array"""
    import itk

    # Verify inputs
    if not isinstance(arr, np.ndarray):
        arr = np.asarray(arr)

    # Return VectorContainer with 64-bit index type
    if os.name == "nt":
        IndexType = itk.ULL
    else:
        IndexType = itk.UL

    # Find container type
    if ttype is not None:
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            DataType = ttype[0]
        else:
            DataType = ttype
    else:
        DataType = _get_itk_pixelid(arr)
    keys = [k for k in itk.PyVectorContainer.keys() if k == (IndexType, DataType)]
    if len(keys) == 0:
        raise RuntimeError("No suitable template parameter can be found.")
    # Create numpy array of the type of the input container
    return itk.PyVectorContainer[keys[0]].vector_container_from_array(arr)


def _GetArrayFromVnlObject(vnl_object, function_name: str, ttype) -> np.ndarray:
    """Get an array with the content of vnl_object"""
    # Finds the vnl object type
    import itk

    if ttype is not None:
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            PixelType = ttype[0]
        else:
            PixelType = ttype
    else:
        PixelType = itk.template(vnl_object)[1][0]
    keys = [k for k in itk.PyVnl.keys() if k[0] == PixelType]
    if len(keys) == 0:
        raise RuntimeError("No suitable template parameter can be found.")
    # Create a numpy array of the type of the vnl object
    templatedFunction = getattr(itk.PyVnl[keys[0]], function_name)
    return templatedFunction(vnl_object)


def GetArrayFromVnlVector(vnl_vector, ttype=None) -> np.ndarray:
    """Get an array with the content of vnl_vector"""
    return _GetArrayFromVnlObject(vnl_vector, "GetArrayFromVnlVector", ttype)


array_from_vnl_vector = GetArrayFromVnlVector


def GetArrayViewFromVnlVector(vnl_vector, ttype=None) -> np.ndarray:
    """Get an array view of vnl_vector"""
    return _GetArrayFromVnlObject(vnl_vector, "GetArrayViewFromVnlVector", ttype)


array_view_from_vnl_vector = GetArrayFromVnlVector


def GetArrayFromVnlMatrix(vnl_matrix, ttype=None) -> np.ndarray:
    """Get an array with the content of vnl_matrix"""
    return _GetArrayFromVnlObject(vnl_matrix, "GetArrayFromVnlMatrix", ttype)


array_from_vnl_matrix = GetArrayFromVnlMatrix


def GetArrayViewFromVnlMatrix(vnl_matrix, ttype=None) -> np.ndarray:
    """Get an array view of vnl_matrix"""
    return _GetArrayFromVnlObject(vnl_matrix, "GetArrayViewFromVnlMatrix", ttype)


array_view_from_vnl_matrix = GetArrayViewFromVnlMatrix


def _GetVnlObjectFromArray(arr: ArrayLike, function_name: str, ttype):
    """Get a vnl object from a Python array."""
    import itk

    # Verify inputs
    if not isinstance(arr, np.ndarray):
        arr = np.asarray(arr)

    if ttype is not None:
        if isinstance(ttype, (tuple, list)):
            if len(ttype) != 1:
                raise RuntimeError("Expected 1 component in ttype tuple.")
            PixelType = ttype[0]
        else:
            PixelType = ttype
    else:
        PixelType = _get_itk_pixelid(arr)
    keys = [k for k in itk.PyVnl.keys() if k[0] == PixelType]
    if len(keys) == 0:
        raise RuntimeError("No suitable template parameter can be found.")
    templatedFunction = getattr(itk.PyVnl[keys[0]], function_name)
    return templatedFunction(arr)


def GetVnlVectorFromArray(arr: ArrayLike, ttype=None):
    """Get a vnl vector from a Python array."""
    return _GetVnlObjectFromArray(arr, "GetVnlVectorFromArray", ttype)


vnl_vector_from_array = GetVnlVectorFromArray


def GetVnlMatrixFromArray(arr: ArrayLike, ttype=None):
    """Get a vnl matrix from a Python array."""
    return _GetVnlObjectFromArray(arr, "GetVnlMatrixFromArray", ttype)


vnl_matrix_from_array = GetVnlMatrixFromArray


def GetArrayFromMatrix(itk_matrix) -> np.ndarray:
    return GetArrayFromVnlMatrix(itk_matrix.GetVnlMatrix().as_matrix())


array_from_matrix = GetArrayFromMatrix


def GetMatrixFromArray(arr: ArrayLike) -> "itkt.Matrix":
    import itk

    # Verify inputs
    if not isinstance(arr, np.ndarray):
        arr = np.asarray(arr)

    vnl_matrix = GetVnlMatrixFromArray(arr)

    dims = arr.shape
    PixelType = _get_itk_pixelid(arr)
    m = itk.Matrix[PixelType, dims[0], dims[1]](vnl_matrix)
    return m


matrix_from_array = GetMatrixFromArray


def vtk_image_from_image(l_image: "itkt.ImageOrImageSource") -> "vtk.vtkImageData":
    """Convert an itk.Image to a vtk.vtkImageData."""
    import itk
    import vtk
    from vtk.util.numpy_support import numpy_to_vtk

    array = itk.array_view_from_image(l_image)

    vtk_image = vtk.vtkImageData()
    data_array = numpy_to_vtk(array.reshape(-1))
    data_array.SetNumberOfComponents(l_image.GetNumberOfComponentsPerPixel())
    data_array.SetName("Scalars")
    # Always set Scalars for (future?) multi-component volume rendering
    vtk_image.GetPointData().SetScalars(data_array)
    dim = l_image.GetImageDimension()
    l_spacing = [1.0] * 3
    l_spacing[:dim] = l_image.GetSpacing()
    vtk_image.SetSpacing(l_spacing)
    l_origin = [0.0] * 3
    l_origin[:dim] = l_image.GetOrigin()
    vtk_image.SetOrigin(l_origin)
    dims = [1] * 3
    dims[:dim] = itk.size(l_image)
    vtk_image.SetDimensions(dims)
    # Copy direction matrix for VTK>=9
    import vtk

    if vtk.vtkVersion.GetVTKMajorVersion() >= 9:
        l_direction = l_image.GetDirection()
        direction = itk.array_from_matrix(l_direction).flatten().tolist()
        if len(direction) == 4:
            # Change 2d matrix to 3d
            direction = [
                direction[0],
                direction[1],
                0.0,
                direction[2],
                direction[3],
                0.0,
                0.0,
                0.0,
                1.0,
            ]
        vtk_image.SetDirectionMatrix(direction)
    if l_image.GetImageDimension() == 3:
        PixelType = itk.template(l_image)[1][0]
        if PixelType == itk.Vector:
            vtk_image.GetPointData().SetVectors(data_array)
        elif PixelType == itk.CovariantVector:
            vtk_image.GetPointData().SetVectors(data_array)
        elif PixelType == itk.SymmetricSecondRankTensor:
            vtk_image.GetPointData().SetTensors(data_array)
        elif PixelType == itk.DiffusionTensor3D:
            vtk_image.GetPointData().SetTensors(data_array)
    return vtk_image


def image_from_vtk_image(vtk_image: "vtk.vtkImageData") -> "itkt.ImageBase":
    """Convert a vtk.vtkImageData to an itk.Image."""
    import itk
    from vtk.util.numpy_support import vtk_to_numpy

    point_data = vtk_image.GetPointData()
    array = vtk_to_numpy(point_data.GetScalars())
    array = array.reshape(-1)
    number_of_components = point_data.GetScalars().GetNumberOfComponents()
    is_vector = number_of_components != 1
    dims = list(vtk_image.GetDimensions())
    if is_vector and dims[-1] == 1:
        dims = dims[:-1]  # 2D, not 3D
    dims.reverse()
    if is_vector:
        dims.append(number_of_components)
    array.shape = tuple(dims)
    l_image = itk.image_view_from_array(array, is_vector)

    dim = l_image.GetImageDimension()
    l_spacing = [1.0] * dim
    l_spacing[:dim] = vtk_image.GetSpacing()[:dim]
    l_image.SetSpacing(l_spacing)
    l_origin = [0.0] * dim
    l_origin[:dim] = vtk_image.GetOrigin()[:dim]
    l_image.SetOrigin(l_origin)
    # Direction support with VTK 9
    import vtk

    if vtk.vtkVersion.GetVTKMajorVersion() >= 9:
        direction = vtk_image.GetDirectionMatrix()
        if dim == 3:
            direction_array = np.identity(3)
            for y in (0, 1, 2):
                for x in (0, 1, 2):
                    direction_array[x, y] = direction.GetElement(x, y)
        elif dim == 2:
            direction_array = np.identity(2)
            for y in (0, 1):
                for x in (0, 1):
                    direction_array[x, y] = direction.GetElement(x, y)
        l_direction = itk.matrix_from_array(direction_array)
        l_image.SetDirection(l_direction)
    return l_image


def dict_from_image(image: "itkt.Image") -> Dict:
    """Serialize a Python itk.Image object to a pickable Python dictionary."""
    import itk

    pixel_arr = itk.array_from_image(image)
    imageType = wasm_type_from_image_type(image)
    buffered_region = image.GetBufferedRegion()
    bufferedRegion = {
        "index": tuple(buffered_region.GetIndex()),
        "size": tuple(buffered_region.GetSize()),
    }
    return dict(
        imageType=imageType,
        name=image.GetObjectName(),
        origin=tuple(image.GetOrigin()),
        spacing=tuple(image.GetSpacing()),
        size=tuple(image.GetLargestPossibleRegion().GetSize()),
        bufferedRegion=bufferedRegion,
        direction=np.asarray(image.GetDirection()),
        data=pixel_arr,
    )


def image_from_dict(image_dict: Dict) -> "itkt.Image":
    """Deserialize an dictionary representing an itk.Image object."""
    import itk

    ImageType = image_type_from_wasm_type(image_dict["imageType"])
    if image_dict["data"] is None:
        image = ImageType.New()
        image.SetRegions(image_dict["size"])
        if "bufferedRegion" in image_dict:
            buffered_region = itk.ImageRegion[image.GetImageDimension()]()
            buffered_region.SetIndex(image_dict["bufferedRegion"]["index"])
            buffered_region.SetSize(image_dict["bufferedRegion"]["size"])
            image.SetBufferedRegion(buffered_region)
        image.Allocate(True)
    else:
        image = itk.PyBuffer[ImageType].GetImageViewFromArray(image_dict["data"])
        image.SetRegions(image_dict["size"])
        if "bufferedRegion" in image_dict:
            buffered_region = itk.ImageRegion[image.GetImageDimension()]()
            buffered_region.SetIndex(image_dict["bufferedRegion"]["index"])
            buffered_region.SetSize(image_dict["bufferedRegion"]["size"])
            image.SetBufferedRegion(buffered_region)
    image.SetOrigin(image_dict["origin"])
    image.SetSpacing(image_dict["spacing"])
    image.SetDirection(image_dict["direction"])
    image.SetObjectName(image_dict["name"])
    return image


def mesh_from_dict(mesh_dict: Dict) -> "itkt.Mesh":
    """Deserialize an dictionary representing an itk.Mesh object."""
    import itk

    MeshType = mesh_type_from_wasm_type(mesh_dict["meshType"])
    mesh = MeshType.New()

    mesh.SetObjectName(mesh_dict["name"])

    points = mesh_dict["points"]
    points = itk.vector_container_from_array(points)
    mesh.SetPoints(points)

    point_data = mesh_dict["pointData"]
    point_data = itk.vector_container_from_array(point_data)
    mesh.SetPointData(point_data)

    cells = mesh_dict["cells"]
    cells = itk.vector_container_from_array(cells)
    mesh.SetCellsArray(cells)

    cell_data = mesh_dict["cellData"]
    cell_data = itk.vector_container_from_array(cell_data)
    mesh.SetCellData(cell_data)

    return mesh


def dict_from_mesh(mesh: "itkt.Mesh") -> Dict:
    """Serialize a Python itk.Mesh object to a pickable Python dictionary."""
    import itk

    mesh_template = itk.template(mesh)
    pixel_type, mangle, pixel_type_components = wasm_type_from_mesh_type(mesh)

    number_of_points = mesh.GetNumberOfPoints()
    number_of_cells = mesh.GetNumberOfCells()

    if number_of_cells == 0:
        cells_array = np.array([], np.uint)
    else:
        cells_array = itk.array_from_vector_container(mesh.GetCellsArray())

    if number_of_points == 0:
        points_array = np.array([], np.float32)
    else:
        points_array = itk.array_from_vector_container(mesh.GetPoints()).flatten()

    point_data = mesh.GetPointData()
    if point_data.Size() == 0:
        point_data_numpy = np.array([], mangle)
    else:
        point_data_numpy = itk.array_from_vector_container(point_data)

    cell_data = mesh.GetCellData()
    if cell_data.Size() == 0:
        cell_data_numpy = np.array([], mangle)
    else:
        cell_data_numpy = itk.array_from_vector_container(cell_data)

    if os.name == "nt":
        cell_component_type = python_to_js(itk.ULL)
    else:
        cell_component_type = python_to_js(itk.UL)

    point_component_type = python_to_js(itk.F)

    # Currently use the same data type for point and cell data
    mesh_type = dict()
    mesh_type["dimension"] = mesh_template[1][1]
    mesh_type["pointComponentType"] = point_component_type
    mesh_type["pointPixelComponentType"] = mangle
    mesh_type["pointPixelType"] = pixel_type
    mesh_type["pointPixelComponents"] = pixel_type_components
    mesh_type["cellComponentType"] = cell_component_type
    mesh_type["cellPixelComponentType"] = mangle
    mesh_type["cellPixelType"] = pixel_type
    mesh_type["cellPixelComponents"] = pixel_type_components

    cell_buffer_size = cells_array.size

    return dict(
        meshType=mesh_type,
        name=mesh.GetObjectName(),
        numberOfPoints=number_of_points,
        points=points_array,
        numberOfPointPixels=point_data.Size(),
        pointData=point_data_numpy,
        numberOfCells=number_of_cells,
        cells=cells_array,
        numberOfCellPixels=cell_data.Size(),
        cellData=cell_data_numpy,
        cellBufferSize=cell_buffer_size,
    )


def pointset_from_dict(pointset_dict: Dict) -> "itkt.PointSet":
    """Deserialize an dictionary representing an itk.PointSet object."""
    import itk

    MeshType = pointset_type_from_wasm_type(pointset_dict["pointSetType"])
    mesh = MeshType.New()

    mesh.SetObjectName(pointset_dict["name"])

    points = pointset_dict["points"]
    points = itk.vector_container_from_array(points)
    mesh.SetPoints(points)

    point_data = pointset_dict["pointData"]
    point_data = itk.vector_container_from_array(point_data)
    mesh.SetPointData(point_data)
    return mesh


def dict_from_pointset(pointset: "itkt.PointSet") -> Dict:
    """Serialize a Python itk.PointSet object to a pickable Python dictionary."""
    import itk

    pointset_template = itk.template(pointset)
    pixel_type, mangle, pixel_type_components = wasm_type_from_pointset_type(pointset)

    number_of_points = pointset.GetNumberOfPoints()

    if number_of_points == 0:
        points_array = np.array([], np.float32)
    else:
        points_array = itk.array_from_vector_container(pointset.GetPoints()).flatten()

    point_data = pointset.GetPointData()
    if point_data.Size() == 0:
        point_data_numpy = np.array([], mangle)
    else:
        point_data_numpy = itk.array_from_vector_container(point_data)

    if os.name == "nt":
        cell_component_type = python_to_js(itk.ULL)
    else:
        cell_component_type = python_to_js(itk.UL)

    point_component_type = python_to_js(itk.F)

    # Currently use the same data type for point and cell data
    pointset_type = dict()
    pointset_type["dimension"] = pointset_template[1][1]
    pointset_type["pointComponentType"] = point_component_type
    pointset_type["pointPixelComponentType"] = mangle
    pointset_type["pointPixelType"] = pixel_type
    pointset_type["pointPixelComponents"] = pixel_type_components

    return dict(
        pointSetType=pointset_type,
        name=pointset.GetObjectName(),
        numberOfPoints=number_of_points,
        points=points_array,
        numberOfPointPixels=point_data.Size(),
        pointData=point_data_numpy,
    )


def polyline_from_dict(polyline_dict: Dict) -> "itkt.PolylineParametricPath":
    """Deserialize an dictionary representing an itk.PolylineParametricPath object."""
    import itk

    vertex_list = polyline_dict["vertexList"]
    dimension = vertex_list.shape[1]
    polyline = itk.PolyLineParametricPath[dimension].New()
    polyline.SetObjectName(polyline_dict["name"])
    for vertex in vertex_list:
        polyline.AddVertex(vertex)

    return polyline


def dict_from_polyline(polyline: "itkt.PolylineParametricPath") -> Dict:
    """Serialize a Python itk.PolylineParametricPath object to a pickable Python dictionary."""
    import itk

    vertex_list = polyline.GetVertexList()
    vertex_list_array = itk.array_from_vector_container(vertex_list)
    return dict(
        name=polyline.GetObjectName(),
        vertexList=vertex_list_array,
    )


def dict_from_transform(
    transform: Union["itkt.TransformBase", List["itkt.TransformBase"]],
) -> Union[List[Dict], Dict]:
    """Serialize a Python itk.Transform object to a pickable Python dictionary.

    If the transform is a list of transforms, then a list of dictionaries is returned.
    If the transform is a single, non-Composite transform, then a single dictionary is returned.
    Composite transforms and nested composite transforms are flattened into a list of dictionaries.
    """
    import itk

    datatype_dict = {"double": itk.D, "float": itk.F}

    def update_transform_dict(current_transform):
        current_transform_type = current_transform.GetTransformTypeAsString()
        current_transform_type_split = current_transform_type.split("_")

        transform_type = dict()
        transform_parameterization = current_transform_type_split[0].replace(
            "Transform", ""
        )
        transform_type["transformParameterization"] = transform_parameterization

        transform_type["parametersValueType"] = python_to_js(
            datatype_dict[current_transform_type_split[1]]
        )
        transform_type["inputDimension"] = int(current_transform_type_split[2])
        transform_type["outputDimension"] = int(current_transform_type_split[3])

        transform_dict = dict()
        transform_dict["transformType"] = transform_type
        transform_dict["name"] = current_transform.GetObjectName()

        transform_dict["inputSpaceName"] = current_transform.GetInputSpaceName()
        transform_dict["outputSpaceName"] = current_transform.GetOutputSpaceName()

        # To avoid copying the parameters for the Composite Transform
        # as it is a copy of child transforms.
        if "Composite" not in current_transform_type_split[0]:
            p = np.array(current_transform.GetParameters())
            transform_dict["parameters"] = p

            fp = np.array(current_transform.GetFixedParameters())
            transform_dict["fixedParameters"] = fp

            transform_dict["numberOfParameters"] = p.shape[0]
            transform_dict["numberOfFixedParameters"] = fp.shape[0]

        return transform_dict

    dict_array = []
    multi = False

    def add_transform_dict(transform):
        transform_type = transform.GetTransformTypeAsString()
        if "CompositeTransform" in transform_type:
            # Add the transforms inside the composite transform
            # range is over-ridden so using this hack to create a list
            for i, _ in enumerate([0] * transform.GetNumberOfTransforms()):
                current_transform = transform.GetNthTransform(i)
                dict_array.append(update_transform_dict(current_transform))
            return True
        else:
            dict_array.append(update_transform_dict(transform))
            return False

    if isinstance(transform, list):
        multi = True
        for t in transform:
            add_transform_dict(t)
    else:
        multi = add_transform_dict(transform)

    if multi:
        return dict_array
    else:
        return dict_array[0]


def transform_from_dict(
    transform_dict: Union[Dict, List[Dict]],
) -> "itkt.TransformBase":
    """Deserialize a dictionary representing an itk.Transform object.

    If the dictionary represents a list of transforms, then a Composite Transform is returned.
    """
    import itk

    def set_parameters(
        transform, transform_parameters, transform_fixed_parameters, data_type
    ):
        # First set fixed parameters then parameters
        o1 = itk.OptimizerParameters[data_type](list(transform_fixed_parameters))
        transform.SetFixedParameters(o1)

        o2 = itk.OptimizerParameters[data_type](list(transform_parameters))
        transform.SetParameters(o2)

    # For checking transforms which don't take additional parameters while instantiation
    def special_transform_check(transform_name):
        if "2D" in transform_name or "3D" in transform_name:
            return True

        check_list = ["VersorTransform", "QuaternionRigidTransform"]
        for t in check_list:
            if transform_name == t:
                return True
        return False

    parametersValueType_dict = {"float32": itk.F, "float64": itk.D}

    if not isinstance(transform_dict, list):
        transform_dict = [transform_dict]

    # Loop over all the transforms in the dictionary
    transforms_list = []
    for i, _ in enumerate(transform_dict):
        transform_type = transform_dict[i]["transformType"]
        data_type = parametersValueType_dict[transform_type["parametersValueType"]]

        transform_parameterization = (
            transform_type["transformParameterization"] + "Transform"
        )

        # No template parameter needed for transforms having 2D or 3D name
        # Also for some selected transforms
        if special_transform_check(transform_parameterization):
            transform_template = getattr(itk, transform_parameterization)
            transform = transform_template[data_type].New()
        # Currently only BSpline Transform has 3 template parameters
        # For future extensions the information will have to be encoded in
        # the transformType variable. The transform object once added in a
        # composite transform lose the information for other template parameters ex. BSpline.
        # The Spline order is fixed as 3 here.
        elif transform_parameterization == "BSplineTransform":
            transform_template = getattr(itk, transform_parameterization)
            transform = transform_template[
                data_type, transform_type["inputDimension"], 3
            ].New()
        else:
            transform_template = getattr(itk, transform_parameterization)
            if len(transform_template.items()[0][0]) > 2:
                transform = transform_template[
                    data_type,
                    transform_type["inputDimension"],
                    transform_type["outputDimension"],
                ].New()
            else:
                transform = transform_template[
                    data_type, transform_type["inputDimension"]
                ].New()

        transform.SetObjectName(transform_dict[i]["name"])
        transform.SetInputSpaceName(transform_dict[i]["inputSpaceName"])
        transform.SetOutputSpaceName(transform_dict[i]["outputSpaceName"])

        set_parameters(
            transform,
            transform_dict[i]["parameters"],
            transform_dict[i]["fixedParameters"],
            data_type,
        )
        transforms_list.append(transform)

    # If array has length more than 1 then it's a composite transform
    if len(transforms_list) > 1:
        # Create a Composite Transform object
        # and add all the transforms in it.
        data_type = parametersValueType_dict[
            transform_dict[0]["transformType"]["parametersValueType"]
        ]
        transform = itk.CompositeTransform[
            data_type, transforms_list[0]["transformType"]["inputDimension"]
        ].New()
        for current_transform in transforms_list:
            transform.AddTransform(current_transform)
    else:
        transform = transforms_list[0]

    return transform


def image_intensity_min_max(image_or_filter: "itkt.ImageOrImageSource"):
    """Return the minimum and maximum of values in a image of in the output image of a filter

    The minimum and maximum values are returned in a tuple: (min, max)
    image_intensity_min_max() take care of updating the pipeline
    """
    import itk

    img = itk.output(image_or_filter)
    img.UpdateOutputInformation()
    img.Update()
    # don't put that calculator in the automatic pipeline
    tmp_auto_pipeline = auto_pipeline.current
    auto_pipeline.current = None
    comp = itk.MinimumMaximumImageCalculator[img].New(Image=img)
    auto_pipeline.current = tmp_auto_pipeline
    comp.Compute()
    return comp.GetMinimum(), comp.GetMaximum()


# range is a python function, and should not be overridden
# the current use of the function name "range" is for backward
# compatibility, but should be considered for removal in the future
def range(image_or_filter):
    return image_intensity_min_max(image_or_filter)


def imwrite(
    image_or_filter: "itkt.ImageOrImageSource",
    filename: fileiotype,
    compression: bool = False,
    imageio: Optional["itkt.ImageIOBase"] = None,
) -> None:
    """Write a image or the output image of a filter to a file.

    Parameters
    ----------

    image_or_filter :
        Image or filter that produces an image to write to the file.

    filename :
        Target output file path.

    compression :
        Use compression when writing if the format supports it.

    imageio :
        Use the provided itk.ImageIOBase derived instance to write the file.

    The writer is instantiated with the image type of the image in
    parameter (or, again, with the output image of the filter in parameter).
    """
    import itk

    img = itk.output(image_or_filter)
    img.UpdateOutputInformation()
    # don't put that writer in the automatic pipeline
    tmp_auto_pipeline = auto_pipeline.current
    auto_pipeline.current = None
    writer = itk.ImageFileWriter[type(img)].New(
        Input=img, FileName=f"{filename}", UseCompression=compression
    )
    auto_pipeline.current = tmp_auto_pipeline
    if imageio:
        writer.SetImageIO(imageio)
    writer.Update()


def imread(
    filename: Union[fileiotype, Sequence[Union[str, os.PathLike]]],
    pixel_type: Optional["itkt.PixelTypes"] = None,
    fallback_only: bool = False,
    imageio: Optional["itkt.ImageIOBase"] = None,
    series_uid: Optional[Union[int, str]] = None,
) -> "itkt.ImageBase":
    """Read an image from a file or series of files and return an itk.Image.

    Parameters
    ----------

    filename :
        File path for a single file, a list of files for an image series, or a
        directory for a DICOM image series.

    pixel_type :
        Image pixel type to cast to when loading.

    fallback_only :
        If true, first try to automatically deduce the image pixel type, and
        only use the given `pixel_type` if automatic deduction fails.

    imageio :
        Use the provided itk.ImageIOBase derived instance to read the file.

    series_uid :
        If filename is a directory of DICOM files, and series_uid is a string, it will read the DICOM series that matches this series_uid name.  If series_uid is an integer, it will read the series_uid'th DICOM series in the directory (using python notation, e.g., -1 is the last DICOM series in the directory). If unspecified, it will read the first series in the directory.

    Returns
    -------

    image :
        The resulting itk.Image.

    The reader is instantiated with the image type of the image file if
    `pixel_type` is not provided (default). The dimension of the image is
    automatically deduced from the dimension stored on disk.

    If the filename provided is a directory then the directory is assumed
    to be for a DICOM series volume. If the argument series_uid is
    specified, it will read that series from that directory. If the
    specified series_uid doesn't exist, an error is thrown.  If no
    series_uid is given, the first series in that directory is read.

    If the given filename is a list or a tuple of file names, the reader
    will use an itk.ImageSeriesReader object to read the files.

    If `fallback_only` is set to `True`, `imread()` will first try to
    automatically deduce the image pixel_type, and only use the given
    `pixel_type` if automatic deduction fails. Failures typically happen if
    the pixel type is not supported (e.g. it is not currently wrapped).

    """
    import itk
    from itk.support.extras import TemplateTypeError

    if fallback_only:
        if pixel_type is None:
            raise Exception(
                "pixel_type must be set when using the fallback_only option"
            )
        try:
            return imread(filename)
        except (KeyError, TemplateTypeError):
            pass
    if type(filename) not in [list, tuple]:
        import os

        if os.path.isdir(filename) and imageio is None:
            # read DICOM series of 1 image in a folder, refer to: https://github.com/RSIP-Vision/medio
            names_generator = itk.GDCMSeriesFileNames.New()
            names_generator.SetUseSeriesDetails(True)
            names_generator.AddSeriesRestriction("0008|0021")  # Series Date
            names_generator.SetDirectory(f"{filename}")
            series_uid_list = names_generator.GetSeriesUIDs()
            if len(series_uid_list) == 0:
                raise FileNotFoundError(f"no DICOMs in: {filename}.")
            if series_uid != None:
                if isinstance(series_uid, int):
                    try:
                        series_identifier = series_uid_list[series_uid]
                    except IndexError:
                        raise OSError(
                            f"cannot access DICOM series {series_uid} in the directory {filename}."
                        )
                else:
                    if series_uid in series_uid_list:
                        series_identifier = series_uid
                    else:
                        raise OSError(
                            f"the directory {filename} does not contain the DICOM series {series_uid}."
                        )
            else:
                series_identifier = series_uid_list[0]
            filename = names_generator.GetFileNames(series_identifier)
    if type(filename) in [list, tuple]:
        template_reader_type = itk.ImageSeriesReader
        io_filename = f"{filename[0]}"
        increase_dimension = True
        kwargs = {"FileNames": [f"{str(f)}" for f in filename]}
    else:
        template_reader_type = itk.ImageFileReader
        io_filename = f"{filename}"
        increase_dimension = False
        kwargs = {"FileName": f"{filename}"}
    if imageio:
        kwargs["ImageIO"] = imageio
    if pixel_type:
        image_IO = itk.ImageIOFactory.CreateImageIO(
            io_filename, itk.CommonEnums.IOFileMode_ReadMode
        )
        if not image_IO:
            if os.path.exists(io_filename):
                raise RuntimeError("No ImageIO is registered to handle the given file.")
            else:
                raise FileNotFoundError(f"File {io_filename} does not exist.")
        image_IO.SetFileName(io_filename)
        image_IO.ReadImageInformation()
        dimension = image_IO.GetNumberOfDimensions()
        # Increase dimension if last dimension is not of size one.
        if increase_dimension and image_IO.GetDimensions(dimension - 1) != 1:
            dimension += 1
        is_vlv = False
        try:
            is_vlv = itk.template(pixel_type)[0] is itk.VariableLengthVector
        except KeyError:
            pass
        if is_vlv:
            ImageType = itk.VectorImage[itk.template(pixel_type)[1][0], dimension]
        else:
            ImageType = itk.Image[pixel_type, dimension]
        reader = template_reader_type[ImageType].New(**kwargs)
    else:
        reader = template_reader_type.New(**kwargs)
    reader.Update()
    return reader.GetOutput()


def meshwrite(
    mesh: "itkt.Mesh", filename: fileiotype, compression: bool = False
) -> None:
    """Write a mesh to a file.

    The writer is instantiated according to the type of the input mesh.
    """
    import itk

    mesh.UpdateOutputInformation()
    # don't put that writer in the automatic pipeline
    tmp_auto_pipeline = auto_pipeline.current
    auto_pipeline.current = None
    writer = itk.MeshFileWriter[type(mesh)].New(
        Input=mesh, FileName=f"{filename}", UseCompression=compression
    )
    auto_pipeline.current = tmp_auto_pipeline
    writer.Update()


def meshread(
    filename: fileiotype,
    pixel_type: Optional["itkt.PixelTypes"] = None,
    fallback_only: bool = False,
) -> "itkt.Mesh":
    """Read a mesh from a file and return an itk.Mesh.

    The reader is instantiated with the mesh type of the mesh file if
    `pixel_type` is not provided (default). The dimension of the mesh is
    automatically found.

    If `fallback_only` is set to `True`, `meshread()` will first try to
    automatically deduce the image pixel_type, and only use the given
    `pixel_type` if automatic deduction fails. Failures typically
    happen if the pixel type is not supported (e.g. it is not currently
    wrapped).
    """
    import itk

    if fallback_only:
        if pixel_type is None:
            raise Exception(
                "pixel_type must be set when using the fallback_only option"
            )
        try:
            return meshread(filename)
        except (KeyError, itk.TemplateTypeError):
            pass
    TemplateReaderType = itk.MeshFileReader
    io_filename = f"{filename}"
    increase_dimension = False
    kwargs = {"FileName": f"{filename}"}
    if pixel_type:
        meshIO = itk.MeshIOFactory.CreateMeshIO(
            io_filename, itk.CommonEnums.IOFileMode_ReadMode
        )
        if not meshIO:
            raise RuntimeError("No MeshIO is registered to handle the given file.")
        meshIO.SetFileName(io_filename)
        meshIO.ReadMeshInformation()
        dimension = meshIO.GetPointDimension()
        # Increase dimension if last dimension is not of size one.
        if increase_dimension and meshIO.GetDimensions(dimension - 1) != 1:
            dimension += 1
        MeshType = itk.Mesh[pixel_type, dimension]
        reader = TemplateReaderType[MeshType].New(**kwargs)
    else:
        reader = TemplateReaderType.New(**kwargs)
    reader.Update()
    return reader.GetOutput()


def transformread(filename: fileiotype) -> List["itkt.TransformBase"]:
    """Read an itk Transform file.

    Parameters
    ----------

    filename:
        Path to the transform file (typically a .h5 file).

    Returns
    -------

    A Python list containing the transforms in the file.
    """
    import itk

    reader = itk.TransformFileReaderTemplate[itk.D].New()
    reader.SetFileName(f"{filename}")
    reader.Update()

    transforms = []
    transform_list = reader.GetModifiableTransformList()
    while not transform_list.empty():
        transform = transform_list.pop()
        transforms.append(itk.down_cast(transform))
    transforms.reverse()

    return transforms


def transformwrite(
    transforms: Union["itkt.TransformBase", List["itkt.TransformBase"]],
    filename: fileiotype,
    compression: bool = False,
) -> None:
    """Write an itk Transform file.

    Parameters
    ----------

    transforms: single transform or list of transforms
        Single transform or Python list of itk.TransformBaseTemplate[itk.D]'s to write.

    filename:
        Path to the transform file (typically a .h5 file).

    compression:
        Use compression, if the file format supports it.
    """
    import itk

    writer = itk.TransformFileWriterTemplate[itk.D].New()
    writer.SetFileName(f"{filename}")
    writer.SetUseCompression(compression)
    if not isinstance(transforms, list):
        transforms = [transforms]
    for transform in transforms:
        writer.AddTransform(transform)
    writer.Update()


def search(s: str, case_sensitive: bool = False) -> List[str]:  # , fuzzy=True):
    """Search for a class name in the itk module."""
    s = s.replace(" ", "")
    if not case_sensitive:
        s = s.lower()
    import itk

    names = sorted(dir(itk))
    # exact match first
    if case_sensitive:
        res = [n for n in names if s == n]
    else:
        res = [n for n in names if s == n.lower()]
    # then exact match inside the name
    if case_sensitive:
        res += [n for n in names if s in n and s != n]
    else:
        res += [n for n in names if s in n.lower() and s != n.lower()]
    #     if fuzzy:
    #         try:
    # everything now requires editdist
    #             import editdist
    #             if case_sensitive:
    #                 res.sort(key=lambda x: editdist.distance(x, s))
    #             else:
    #                 res.sort(key=lambda x: (editdist.distance(x.lower(), s), x))
    #         except:
    #             pass
    return res


def set_inputs(
    new_itk_object,
    inargs: Optional[Sequence[Any]] = None,
    inkargs: Optional[Dict[str, Any]] = None,
):
    """Set the inputs of the given objects, according to the non named or the
    named parameters in args and kargs

    This function tries to assign all the non named parameters in the input of
    the new_itk_object
    - the first non named parameter in the first input, etc.

    The named parameters are used by calling the method with the same name
    prefixed by 'Set'.
    set_inputs( obj, kargs={'Threshold': 10} ) calls obj.SetThreshold(10)

    This is the function use in the enhanced New() method to manage the inputs.
    It can be used to produce a similar behavior:

    def SetInputs(self, *args, **kargs):
        import itk
        itk.set_inputs(self, *args, **kargs)
    """

    # Fix bug with Mutable Default Arguments
    # https://docs.python-guide.org/writing/gotchas/
    args: List[Any] = inargs if inargs else []
    kargs: Dict[str, Any] = inkargs if inkargs else {}

    # try to get the images from the filters in args
    args = [output(arg) for arg in args]

    # args without name are filter used to set input image
    #
    # count SetInput calls to call SetInput, SetInput2, SetInput3, ...
    # useful with filter which take 2 input (or more) like SubtractImageFiler
    # Ex: subtract image2.png to image1.png and save the result in result.png
    # r1 = itk.ImageFileReader.US2.New(FileName='image1.png')
    # r2 = itk.ImageFileReader.US2.New(FileName='image2.png')
    # s = itk.SubtractImageFilter.US2US2US2.New(r1, r2)
    # itk.ImageFileWriter.US2.New(s, FileName='result.png').Update()
    setInputNb: int = -1
    try:
        for setInputNb, arg in enumerate(args):
            methodName = "SetInput%i" % (setInputNb + 1)
            if methodName in dir(new_itk_object):
                # first try to use methods called SetInput1, SetInput2, ...
                # those method should have more chances to work in case of
                # multiple input types
                getattr(new_itk_object, methodName)(arg)
            else:
                # no method called SetInput?
                # try with the standard SetInput(nb, input)
                new_itk_object.SetInput(setInputNb, arg)
    except TypeError as e:
        # the exception have (at least) to possible reasons:
        # + the filter don't take the input number as first argument
        # + arg is an object of wrong type
        #
        # if it's not the first input, re-raise the exception
        if setInputNb != 0:
            raise e
        # it's the first input, try to use the SetInput() method without input
        # number
        new_itk_object.SetInput(args[0])
        # but raise an exception if there is more than 1 argument
        if len(args) > 1:
            raise TypeError("Object accepts only 1 input.")
    except AttributeError:
        # There is no SetInput() method, try SetImage
        # but before, check the number of inputs
        if len(args) > 1:
            raise TypeError("Object accepts only 1 input.")
        methodList = ["SetImage", "SetInputImage"]
        methodName = None
        for m in methodList:
            if m in dir(new_itk_object):
                methodName = m
        if methodName:
            getattr(new_itk_object, methodName)(args[0])
        else:
            raise AttributeError("No method found to set the input.")

    # named args : name is the function name, value is argument(s)
    for attribName, value in kargs.items():
        # use Set as prefix. It allow to use a shorter and more intuitive
        # call (Ex: itk.ImageFileReader.UC2.New(FileName='image.png')) than
        # with the full name
        # (Ex: itk.ImageFileReader.UC2.New(SetFileName='image.png'))
        if attribName not in ["auto_progress", "template_parameters"]:
            if attribName.islower():
                attribName = snake_to_camel_case(attribName)
            attrib = getattr(new_itk_object, "Set" + attribName)

            # Do not use try-except mechanism as this leads to
            # segfaults. Instead limit the number of types that are
            # tested. The list of tested type could maybe be replaced by
            # a test that would check for iterables.
            import itk

            if type(value) in [list, tuple]:
                # Special case for FileNames which expects a container, not unpacked arguments.
                # Most ITK Set* methods that take multiple values expect them as separate arguments
                # (e.g., SetSpacing(x, y, z)), so lists are unpacked with *.
                # However, SetFileNames expects a single container argument (vector<string>),
                # so we pass the list directly without unpacking.
                if attribName == "FileNames":
                    attrib(value)
                else:
                    try:
                        output_value = [itk.output(x) for x in value]
                        attrib(*output_value)
                    except Exception:
                        attrib(itk.output(value))
            else:
                attrib(itk.output(value))


class templated_class:
    """This class is used to mimic the behavior of the templated C++ classes.

    It is used this way:

    class CustomClass:
        # class definition here
    CustomClass = templated_class(CustomClass)

    customObject = CustomClass[template, parameters].New()

    The template parameters are passed to the custom class constructor as a
    named parameter 'template_parameters' in a tuple.

    The custom class may implement a static method
    check_template_parameters(parameters) which should raise an exception if
    the template parameters provided are not suitable to instantiate the custom
    class.
    """

    def __init__(self, cls) -> None:
        """cls is the custom class"""
        self.__cls__ = cls
        self.__templates__ = {}

    def New(self, *args, **kargs):
        """Use the parameters to infer the types of the template parameters."""
        # extract the types from the arguments to instantiate the class
        import itk

        types = tuple(class_(o) for o in args)
        return self[types].New(*args, **kargs)

    def __getitem__(self, template_parameters):
        """Return a pair class-template parameters ready to be instantiated.

        The template parameters may be validated if the custom class provide
        the static method check_template_parameters(parameters).
        """
        if not isinstance(template_parameters, tuple):
            template_parameters = (template_parameters,)
        return templated_class.__templated_class_and_parameters__(
            self, template_parameters
        )

    def check_template_parameters(self, template_parameters) -> None:
        """Check the template parameters passed in parameter."""
        # this method is there mainly to make possible to reuse it in the
        # custom class constructor after having used templated_class().
        # Without that, the following example doesn't work:
        #
        # class CustomClass:
        #     def __init__(self, *args, **kargs):
        #         template_parameters = kargs["template_parameters"]
        #         CustomClass.check_template_parameters(template_parameters)
        # other init stuff
        #     def check_template_parameters(template_parameters):
        # check, really
        #         pass
        #    CustomClass = templated_class(CustomClass)
        #
        self.__cls__.check_template_parameters(template_parameters)

    def add_template(self, name: str, params):
        if not isinstance(params, list) and not isinstance(params, tuple):
            params = (params,)
        params = tuple(params)
        val = self[params]
        self.__templates__[params] = val
        setattr(self, name, val)

    def add_image_templates(self, *args) -> None:
        import itk

        if not args:
            return
        combinations = [[t] for t in args[0]]
        for types in args[1:]:
            temp = []
            for t in types:
                for c in combinations:
                    temp.append(c + [t])
            combinations = temp
        for d in itk.DIMS:
            for c in combinations:
                parameters = []
                name = ""
                for t in c:
                    parameters.append(itk.Image[t, d])
                    name += "I" + t.short_name + str(d)
                self.add_template(name, tuple(parameters))

    class __templated_class_and_parameters__:
        """Inner class used to store the pair class-template parameters ready
        to instantiate.
        """

        def __init__(self, l_templated_class, l_template_parameters) -> None:
            self.__templated_class__ = l_templated_class
            self.__template_parameters__ = l_template_parameters
            if "check_template_parameters" in dir(l_templated_class.__cls__):
                l_templated_class.__cls__.check_template_parameters(
                    l_template_parameters
                )

        def New(self, *args, **kargs):
            """A New() method to mimic the ITK default behavior, even if the
            class doesn't provide any New() method.
            """
            kargs["template_parameters"] = self.__template_parameters__
            if "New" in dir(self.__templated_class__.__cls__):
                obj = self.__templated_class__.__cls__.New(*args, **kargs)
            else:
                obj = self.__templated_class__.__cls__(*args, **kargs)
            setattr(obj, "__template_parameters__", self.__template_parameters__)
            setattr(obj, "__templated_class__", self.__templated_class__)
            return obj

        def __call__(self, *args, **kargs):
            return self.New(*args, **kargs)

    def keys(self):
        return self.__templates__.keys()

    def values(self):
        return list(self.__templates__.values())

    def items(self):
        return list(self.__templates__.items())

    # everything after this comment is for dict interface
    # and is a copy/paste from DictMixin
    # only methods to edit dictionary are not there
    def __iter__(self) -> str:
        yield from self.keys()

    def has_key(self, key: str):
        return key in self.__templates__

    def __contains__(self, key: str):
        return key in self

    def get(self, key: str, default: Optional[str] = None) -> Optional[str]:
        return self.get(key, default)

    def __len__(self):
        return len(self.keys())


class pipeline:
    """A convenient class to store the reference to the filters of a pipeline

    With this class, a method can create a pipeline of several filters and
    return it without losing the references to the filters in this pipeline.
    The pipeline object act almost like a filter (it has a GetOutput() method)
    and thus can be simply integrated in another pipeline.
    """

    def __init__(self, *args, **kargs) -> None:
        self.clear()
        self.input = None
        self.filters: List[Any] = []
        set_inputs(self, args, kargs)

    def connect(self, l_filter) -> None:
        """Connect a new l_filter to the pipeline

        The output of the first l_filter will be used as the input of this
        one and the l_filter passed as parameter will be added to the list
        """
        if self.GetOutput() is not None:
            set_inputs(l_filter, [self.GetOutput()])
        self.append(l_filter)

    def append(self, l_filter) -> None:
        """Add a new l_filter to the pipeline

        The new l_filter will not be connected. The user must connect it.
        """
        self.filters.append(l_filter)

    def clear(self) -> None:
        """Clear the filter list"""
        self.filters = []

    def GetOutput(self, l_index: int = 0):
        """Return the output of the pipeline

        If another output is needed, use
        pipeline.filters[-1].GetAnotherOutput() instead of this method,
        subclass pipeline to implement another GetOutput() method, or use
        expose()
        """
        if len(self.filters) == 0:
            return self.GetInput()
        else:
            l_filter = self.filters[-1]
            if hasattr(l_filter, "__getitem__"):
                return l_filter[l_index]
            try:
                return l_filter.GetOutput(l_index)
            except Exception:
                if l_index == 0:
                    return l_filter.GetOutput()
                else:
                    raise ValueError("Index can only be 0 on that object")

    def GetNumberOfOutputs(self) -> int:
        """Return the number of outputs"""
        if len(self.filters) == 0:
            return 1
        else:
            return self.filters[-1].GetNumberOfOutputs()

    def SetInput(self, l_input) -> None:
        """Set the l_input of the pipeline"""
        if len(self.filters) != 0:
            set_inputs(self.filters[0], [l_input])
        self.l_input = l_input

    def GetInput(self):
        """Get the input of the pipeline"""
        return self.input

    def Update(self):
        """Update the pipeline"""
        if len(self.filters) > 0:
            return self.filters[-1].Update()

    def UpdateLargestPossibleRegion(self):
        """Update the pipeline"""
        if len(self.filters) > 0:
            return self.filters[-1].UpdateLargestPossibleRegion()

    def UpdateOutputInformation(self) -> None:
        if "UpdateOutputInformation" in dir(self.filters[-1]):
            self.filters[-1].UpdateOutputInformation()
        else:
            self.Update()

    def __len__(self):
        return self.GetNumberOfOutputs()

    def __getitem__(self, item):
        return self.GetOutput(item)

    def __call__(self, *args, **kargs):
        set_inputs(self, args, kargs)
        self.UpdateLargestPossibleRegion()
        return self

    def expose(self, name: str, new_name: Optional[str] = None, position: int = -1):
        """Expose an attribute from a filter of the mini-pipeline.

        Once called, the pipeline instance has a new Set/Get set of methods to
        access directly the corresponding method of one of the filter of the
        pipeline.
        Ex: p.expose( "Radius" )
                p.SetRadius( 5 )
                p.GetRadius( 5 )
        By default, the attribute usable on the pipeline instance has the same
        name than the one of the filter, but it can be changed by providing a
        value to new_name.
        The last filter of the pipeline is used by default, but another one may
        be used by giving its position.
        Ex: p.expose("Radius", "SmoothingNeighborhood", 2)
            p.GetSmoothingNeighborhood()
        """
        if new_name is None:
            new_name = name
        src = self.filters[position]
        ok: bool = False
        set_name: str = "Set" + name
        if set_name in dir(src):
            setattr(self, "Set" + new_name, getattr(src, set_name))
            ok = True
        get_name = "Get" + name
        if get_name in dir(src):
            setattr(self, "Get" + new_name, getattr(src, get_name))
            ok = True
        if not ok:
            raise RuntimeError(f"No attribute {name} at position {position}.")


class auto_pipeline(pipeline):
    current = None

    def __init__(self, *args, **kargs) -> None:
        pipeline.__init__(self, *args, **kargs)
        self.Start()

    def Start(self) -> None:
        auto_pipeline.current = self

    @staticmethod
    def Stop() -> None:
        auto_pipeline.current = None


def down_cast(obj: "itkt.LightObject"):
    """Down cast an itk.LightObject (or a object of a subclass) to its most
    specialized type.
    """
    import itk
    from itk.support.template_class import itkTemplate

    class_name: str = obj.GetNameOfClass()
    t = getattr(itk, class_name)
    if isinstance(t, itkTemplate):
        for c in t.values():
            try:
                return c.cast(obj)
            except Exception:
                # fail silently for now
                pass
        raise RuntimeError(f"Can't downcast to a specialization of {class_name}")
    else:
        return t.cast(obj)


def attribute_list(inputobject, name: str):
    """Returns a list of the specified attributes for the objects in the image.

    i: the input LabelImage
    name: the attribute name
    """
    import itk

    img = itk.output(inputobject)
    relabel = itk.StatisticsRelabelLabelMapFilter[img].New(
        img, Attribute=name, ReverseOrdering=True, InPlace=False
    )
    relabel.UpdateLargestPossibleRegion()
    r = relabel.GetOutput()
    l_list: List[Any] = []
    # required because range is overloaded in this module
    import sys
    from builtins import range

    for i in range(1, r.GetNumberOfLabelObjects() + 1):
        l_list.append(r.GetLabelObject(i).__getattribute__("Get" + name)())
    return l_list


def attributes_list(inputObject, names: List[str]):
    """Returns a list of the specified attributes for the objects in the image.

    i: the input LabelImage
    name: the attribute name
    """
    import itk

    img = itk.output(inputObject)
    relabel = itk.StatisticsRelabelLabelMapFilter[img].New(
        img, Attribute=names[0], ReverseOrdering=True, InPlace=False
    )
    relabel.UpdateLargestPossibleRegion()
    r = relabel.GetOutput()
    l_list: List[Any] = []
    # required because range is overloaded in this module
    from builtins import range

    for i in range(1, r.GetNumberOfLabelObjects() + 1):
        attrs = []
        for name in names:
            attrs.append(r.GetLabelObject(i).__getattribute__("Get" + name)())
        l_list.append(tuple(attrs))
    return l_list


def attribute_dict(inputobject, name: str):
    """Returns a dict with the attribute values in keys and a list of the
    corresponding objects in value

    i: the input LabelImage
    name: the name of the attribute
    """
    import itk

    img = itk.output(inputobject)
    relabel = itk.StatisticsRelabelLabelMapFilter[img].New(
        img, Attribute=name, ReverseOrdering=True, InPlace=False
    )
    relabel.UpdateLargestPossibleRegion()
    r = relabel.GetOutput()
    d = {}
    # required because range is overloaded in this module
    from builtins import range

    for i in range(1, r.GetNumberOfLabelObjects() + 1):
        lo = r.GetLabelObject(i)
        v = lo.__getattribute__("Get" + name)()
        l_list = d.get(v, [])
        l_list.append(lo)
        d[v] = l_list
    return d


def number_of_objects(image_or_filter) -> int:
    """Returns the number of objects in the image.

    img: the input LabelImage
    """
    import itk

    image_or_filter.UpdateLargestPossibleRegion()
    img = itk.output(image_or_filter)
    return img.GetNumberOfLabelObjects()


def ipython_kw_matches(text: str):
    """Match named ITK object's named parameters"""
    import IPython
    import itk
    import re
    import inspect
    from itk.support import template_class

    regexp = re.compile(
        r"""
                    '.*?' |  # single quoted strings or
                    ".*?" |  # double quoted strings or
                    \w+     |  # identifier
                    \S  # other characters
                    """,
        re.VERBOSE | re.DOTALL,
    )
    ip = IPython.get_ipython()
    if "." in text:  # a parameter cannot be dotted
        return []
    # 1. Find the nearest identifier that comes before an unclosed
    # parenthesis e.g. for "foo (1+bar(x), pa", the candidate is "foo".
    if ip.Completer.readline:
        text_until_cursor = ip.Completer.readline.get_line_buffer()[
            : ip.Completer.readline.get_endidx()
        ]
    else:
        # IPython >= 5.0.0, which is based on the Python Prompt Toolkit
        text_until_cursor = ip.Completer.text_until_cursor

    tokens = regexp.findall(text_until_cursor)
    tokens.reverse()
    iter_tokens = iter(tokens)
    open_par = 0
    for token in iter_tokens:
        if token == ")":
            open_par -= 1
        elif token == "(":
            open_par += 1
            if open_par > 0:
                # found the last unclosed parenthesis
                break
    else:
        return []
    # 2. Concatenate dotted names ("foo.bar" for "foo.bar(x, pa" )
    ids = []
    is_id = re.compile(r"\w+$").match
    while True:
        try:
            ids.append(iter_tokens.next())
            if not is_id(ids[-1]):
                ids.pop()
                break
            if not iter_tokens.next() == ".":
                break
        except StopIteration:
            break
    # lookup the candidate callable matches either using global_matches
    # or attr_matches for dotted names
    if len(ids) == 1:
        callable_matches = ip.Completer.global_matches(ids[0])
    else:
        callable_matches = ip.Completer.attr_matches(".".join(ids[::-1]))
    arg_matches = []
    for callable_match in callable_matches:
        # drop the .New at this end, so we can search in the class members
        if callable_match.endswith(".New"):
            callable_match = callable_match[:-4]
        elif not re.findall("([A-Z])", callable_match):  # True if snake case
            # Split at the last '.' occurrence
            split_name_parts = callable_match.split(".")
            namespace = split_name_parts[:-1]
            function_name = split_name_parts[-1]
            # Find corresponding object name
            object_name = snake_to_camel_case(function_name)
            # Check that this object actually exists
            try:
                object_callable_match = ".".join(namespace + [object_name])
                eval(object_callable_match, ip.Completer.namespace)
                # Reconstruct full object name
                callable_match = object_callable_match
            except AttributeError:
                # callable_match is not a snake case function with a
                # corresponding object.
                pass
        try:
            l_object = eval(callable_match, ip.Completer.namespace)
            if isinstance(l_object, template_class.itkTemplate):
                # this is a template - lets grab the first entry to search for
                # the methods
                l_object = l_object.values()[0]
            named_args = []
            is_in: bool = isinstance(l_object, itk.LightObject)
            if is_in or (
                inspect.isclass(l_object) and issubclass(l_object, itk.LightObject)
            ):
                named_args = [n[3:] for n in dir(l_object) if n.startswith("Set")]
        except Exception as e:
            print(e)
            continue
        for namedArg in named_args:
            if namedArg.startswith(text):
                arg_matches.append(f"{namedArg}=")
    return arg_matches


def template(cl):
    """Return the template of a class (or of the class of an object) and
    its parameters

    template() returns a tuple with 2 elements:
        - the first one is the itkTemplate object
        - the second is a tuple containing the template parameters
    """
    from itk.support.template_class import itkTemplateBase

    return itkTemplateBase.__template_instantiations_object_to_name__[class_(cl)]


def ctype(s: str) -> "itkt.itkCType":
    """Return the c type corresponding to the string passed in parameter

    The string can contain some extra spaces.
    see also itkCType
    """
    from itk.support.types import itkCType

    ret = itkCType.GetCType(" ".join(s.split()))
    if ret is None:
        raise KeyError(f"Unrecognized C type '{s}'")
    return ret


def class_(obj):
    """Return a class from an object

    Often in itk, the __class__ is not what the user is expecting.
    class_() should do a better job
    """
    import inspect

    if inspect.isclass(obj):
        # obj is already a class !
        return obj
    else:
        return obj.__class__


def python_type(object_ref) -> str:
    """Returns the Python type name of an object

    The Python name corresponding to the given instantiated object is printed.
    This includes both the Python name and the parameters of the object. A user
    can copy and paste the printed value to instantiate a new object of the
    same type."""
    from itk.support.template_class import itkTemplate
    from itk.support.types import itkCType

    def in_itk(name):
        import itk

        # Remove "itk::" and "std::" from template name.
        # Only happens for ITK objects.
        shortname: str = name.split("::")[-1]
        shortname = shortname.split("itk")[-1]

        namespace = itk
        # A type cannot be part of ITK if its name was not modified above. This
        # check avoids having an input of type `list` and return `itk.list` that
        # also exists.
        likely_itk: bool = shortname != name or name[:3] == "vnl"
        if likely_itk and hasattr(namespace, shortname):
            return namespace.__name__ + "." + shortname  # Prepend name with 'itk.'
        else:
            return name

    def recursive(l_obj, level: int):

        try:
            type_name, param_list = template(l_obj)
            name = in_itk(type_name.__name__)
            parameters = []
            for t in param_list:
                parameters.append(recursive(t, level + 1))
            return name + "[" + ",".join(parameters) + "]"
        except KeyError:
            if isinstance(l_obj, itkCType):  # Handles CTypes differently
                return "itk." + l_obj.short_name
            elif hasattr(l_obj, "__name__"):
                # This should be where most ITK types end up.
                return in_itk(l_obj.__name__)
            elif (
                not isinstance(l_obj, type)
                and type(l_obj) != itkTemplate
                and level != 0
            ):
                # l_obj should actually be considered a value, not a type,
                # or it is already an itkTemplate type.
                # A value can be an integer that is a template parameter.
                # This does not happen at the first level of the recursion
                # as it is not possible that this object would be a template
                # parameter. Checking the level `0` allows e.g. to find the
                # type of an object that is a `list` or an `int`.
                return str(l_obj)
            else:
                return in_itk(type(l_obj).__name__)

    return recursive(object_ref, 0)


class TemplateTypeError(TypeError):
    def __init__(self, template_type, input_type):
        def tuple_to_string_type(t):
            if type(t) == tuple:
                return ", ".join(python_type(x) for x in t)
            else:
                python_type(t)

        import itk

        # Special case for ITK readers: Add extra information.
        extra_eg: str = ""
        if template_type in [
            itk.ImageFileReader,
            itk.ImageSeriesReader,
            itk.MeshFileReader,
        ]:
            extra_eg = """

or

    e.g.: image = itk.imread(my_input_filename, itk.F)
"""

        python_template_type = python_type(template_type)
        python_input_type = tuple_to_string_type(input_type)
        type_list = "\n".join([python_type(x[0]) for x in template_type.keys()])
        eg_type = ", ".join([python_type(x) for x in list(template_type.keys())[0]])
        msg: str = (
            """{template_type} is not wrapped for input type `{input_type}`.

To limit the size of the package, only a limited number of
types are available in ITK Python. To print the supported
types, run the following command in your python environment:

    {template_type}.GetTypes()

Possible solutions:
* If you are an application user:
** Convert your input image into a supported format (see below).
** Contact developer to report the issue.
* If you are an application developer, force input images to be
loaded in a supported pixel type.

    e.g.: instance = {template_type}[{eg_type}].New(my_input){extra_eg}

* (Advanced) If you are an application developer, build ITK Python yourself and
turned to `ON` the corresponding CMake option to wrap the pixel type or image
dimension you need. When configuring ITK with CMake, you can set
`ITK_WRAP_${{type}}` (replace ${{type}} with appropriate pixel type such as
`double`). If you need to support images with 4 or 5 dimensions, you can add
these dimensions to the list of dimensions in the CMake variable
`ITK_WRAP_IMAGE_DIMS`.

Supported input types:

{type_list}
""".format(
                template_type=python_template_type,
                input_type=python_input_type,
                type_list=type_list,
                eg_type=eg_type,
                extra_eg=extra_eg,
            )
        )
        TypeError.__init__(self, msg)


# install progress callback and custom completer if we are in ipython
# interpreter
try:
    import itkConfig
    import IPython

    if IPython.get_ipython():
        IPython.get_ipython().Completer.matchers.insert(0, ipython_kw_matches)
    # some cleanup
    del itkConfig, IPython
except (ImportError, AttributeError):
    # fail silently
    pass