1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
# ==========================================================================
#
# Copyright NumFOCUS
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==========================================================================*/
import importlib
from importlib.metadata import metadata
import os
import re
import functools
import numpy as np
_HAVE_XARRAY = False
try:
metadata('xarray')
_HAVE_XARRAY = True
except ImportError:
pass
_HAVE_TORCH = False
try:
metadata('torch')
_HAVE_TORCH = True
except importlib.metadata.PackageNotFoundError:
pass
def snake_to_camel_case(keyword: str):
# Helpers for set_inputs snake case to CamelCase keyword argument conversion
_snake_underscore_re = re.compile("(_)([a-z0-9A-Z])")
def _underscore_upper(match_obj):
return match_obj.group(2).upper()
camel = keyword[0].upper()
if _snake_underscore_re.search(keyword[1:]):
return camel + _snake_underscore_re.sub(_underscore_upper, keyword[1:])
return camel + keyword[1:]
def camel_to_snake_case(name):
snake = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name)
snake = re.sub("([a-z0-9])([A-Z])", r"\1_\2", snake)
return snake.replace("__", "_").lower()
def is_arraylike(arr):
return (
hasattr(arr, "shape")
and hasattr(arr, "dtype")
and hasattr(arr, "__array__")
and hasattr(arr, "ndim")
)
def move_first_dimension_to_last(arr):
import numpy as np
dest = list(range(arr.ndim))
source = dest.copy()
end = source.pop()
source.insert(0, end)
arr_contiguous_channels = np.moveaxis(arr, source, dest).copy()
return arr_contiguous_channels
def move_last_dimension_to_first(arr):
import numpy as np
dest = list(range(arr.ndim))
source = dest.copy()
end = source.pop()
source.insert(0, end)
arr_interleaved_channels = np.moveaxis(arr, dest, source).copy()
return arr_interleaved_channels
def accept_array_like_xarray_torch(image_filter):
"""Decorator that allows itk.ProcessObject snake_case functions to accept
NumPy array-like, PyTorch Tensor's or xarray DataArray inputs for itk.Image inputs.
If a NumPy array-like is passed as an input, output itk.Image's are converted to numpy.ndarray's.
If a torch.Tensor is passed as an input, output itk.Image's are converted to torch.Tensors.
If a xarray DataArray is passed as an input, output itk.Image's are converted to xarray.DataArray's."""
import numpy as np
import itk
if _HAVE_XARRAY:
import xarray as xr
if _HAVE_TORCH:
import torch
@functools.wraps(image_filter)
def image_filter_wrapper(*args, **kwargs):
have_array_input = False
have_xarray_input = False
have_torch_input = False
args_list = list(args)
for index, arg in enumerate(args):
if _HAVE_XARRAY and isinstance(arg, xr.DataArray):
have_xarray_input = True
image = itk.image_from_xarray(arg)
args_list[index] = image
elif _HAVE_TORCH and isinstance(arg, torch.Tensor):
have_torch_input = True
channels = arg.shape[0] # assume first dimension is channels
arr = np.asarray(arg)
if channels > 1: # change from contiguous to interleaved channel order
arr = move_last_dimension_to_first(arr)
image = itk.image_view_from_array(arr, is_vector=channels > 1)
args_list[index] = image
elif not isinstance(arg, itk.Object) and is_arraylike(arg):
have_array_input = True
array = np.asarray(arg)
image = itk.image_view_from_array(array)
args_list[index] = image
potential_image_input_kwargs = ("input", "input1", "input2", "input3")
for key, value in kwargs.items():
if key.lower() in potential_image_input_kwargs or "image" in key.lower():
if _HAVE_XARRAY and isinstance(value, xr.DataArray):
have_xarray_input = True
image = itk.image_from_xarray(value)
kwargs[key] = image
elif _HAVE_TORCH and isinstance(value, torch.Tensor):
have_torch_input = True
channels = value.shape[0] # assume first dimension is channels
arr = np.asarray(value)
if (
channels > 1
): # change from contiguous to interleaved channel order
arr = move_last_dimension_to_first(arr)
image = itk.image_view_from_array(arr, is_vector=channels > 1)
kwargs[key] = image
elif not isinstance(value, itk.Object) and is_arraylike(value):
have_array_input = True
array = np.asarray(value)
image = itk.image_view_from_array(array)
kwargs[key] = image
if have_xarray_input or have_torch_input or have_array_input:
# Convert output itk.Image's to numpy.ndarray's
output = image_filter(*tuple(args_list), **kwargs)
if isinstance(output, tuple):
output_list = list(output)
for index, value in enumerate(output_list):
if isinstance(value, itk.Image):
if have_xarray_input:
data_array = itk.xarray_from_image(value)
output_list[index] = data_array
elif have_torch_input:
channels = value.GetNumberOfComponentsPerPixel()
data_array = itk.array_view_from_image(value)
if (
channels > 1
): # change from interleaved to contiguous channel order
data_array = move_first_dimension_to_last(data_array)
torch_tensor = torch.from_numpy(data_array)
output_list[index] = torch_tensor
else:
array = itk.array_view_from_image(value)
output_list[index] = array
return tuple(output_list)
else:
if isinstance(output, itk.Image):
if have_xarray_input:
output = itk.xarray_from_image(output)
elif have_torch_input:
channels = output.GetNumberOfComponentsPerPixel()
output = itk.array_view_from_image(output)
if (
channels > 1
): # change from interleaved to contiguous channel order
output = move_first_dimension_to_last(output)
output = torch.from_numpy(output)
else:
output = itk.array_view_from_image(output)
return output
else:
return image_filter(*args, **kwargs)
return image_filter_wrapper
def python_to_js(name):
import itk
def _long_type():
if os.name == "nt":
return "int32"
else:
return "int64"
_python_to_js = {
itk.SC: "int8",
itk.UC: "uint8",
itk.SS: "int16",
itk.US: "uint16",
itk.SI: "int32",
itk.UI: "uint32",
itk.F: "float32",
itk.D: "float64",
itk.B: "uint8",
itk.SL: _long_type(),
itk.UL: "u" + _long_type(),
itk.SLL: "int64",
itk.ULL: "uint64",
}
return _python_to_js[name]
def js_to_python(name):
def _long_type():
if os.name == "nt":
return "LL"
else:
return "L"
_js_to_python = {
"int8": "SC",
"uint8": "UC",
"int16": "SS",
"uint16": "US",
"int32": "SI",
"uint32": "UI",
"int64": "S" + _long_type(),
"uint64": "U" + _long_type(),
"float32": "F",
"float64": "D",
}
return _js_to_python[name]
def pixelType_to_prefix(name):
_pixelType_to_prefix = {
"Scalar": "",
"RGB": "RGB",
"RGBA": "RGBA",
"Offset": "O",
"Vector": "V",
"CovariantVector": "CV",
"SymmetricSecondRankTensor": "SSRT",
"FixedArray": "FA",
"Array": "A",
"VariableLengthVector": "VLV",
}
return _pixelType_to_prefix[name]
def wasm_type_from_image_type(itkimage): # noqa: C901
import itk
component = itk.template(itkimage)[1][0]
componentType = None
pixelType = "Scalar"
if component in (
itk.SC,
itk.UC,
itk.SS,
itk.US,
itk.SI,
itk.UI,
itk.F,
itk.D,
itk.B,
itk.SL,
itk.SLL,
itk.UL,
itk.ULL,
):
componentType = python_to_js(component)
elif component in [i[1] for i in itk.Vector.items()]:
componentType = python_to_js(itk.template(component)[1][0])
pixelType = "Vector"
elif component == itk.complex[itk.F]:
componentType = "float32"
pixelType = "Complex"
elif component == itk.complex[itk.D]:
componentType = "float64"
pixelType = "Complex"
elif component in [i[1] for i in itk.CovariantVector.items()]:
componentType = python_to_js(itk.template(component)[1][0])
pixelType = "CovariantVector"
elif component in [i[1] for i in itk.Offset.items()]:
componentType = "int64"
pixelType = "Offset"
elif component in [i[1] for i in itk.FixedArray.items()]:
componentType = python_to_js(itk.template(component)[1][0])
pixelType = "FixedArray"
elif component in [i[1] for i in itk.RGBAPixel.items()]:
componentType = python_to_js(itk.template(component)[1][0])
pixelType = "RGBA"
elif component in [i[1] for i in itk.RGBPixel.items()]:
componentType = python_to_js(itk.template(component)[1][0])
pixelType = "RGB"
elif component in [i[1] for i in itk.SymmetricSecondRankTensor.items()]:
# SymmetricSecondRankTensor
componentType = python_to_js(itk.template(component)[1][0])
pixelType = "SymmetrySecondRankTensor"
else:
raise RuntimeError(f"Unrecognized component type: {str(component)}")
if isinstance(itkimage, itk.VectorImage):
pixelType = "VariableLengthVector"
imageType = dict(
dimension=itkimage.GetImageDimension(),
componentType=componentType,
pixelType=pixelType,
components=itkimage.GetNumberOfComponentsPerPixel(),
)
return imageType
def image_type_from_wasm_type(jstype):
import itk
pixelType = jstype["pixelType"]
dimension = jstype["dimension"]
if pixelType == "Complex":
if jstype["componentType"] == "float32":
return itk.Image[itk.complex, itk.F], np.float32
else:
return itk.Image[itk.complex, itk.D], np.float64
postfix = ''
if pixelType != "Offset":
postfix += js_to_python(jstype["componentType"])
if pixelType not in ("Scalar", "RGB", "RGBA", "Complex", "VariableLengthVector"):
postfix += str(dimension)
postfix += str(dimension)
if pixelType == "VariableLengthVector":
return getattr(itk.VectorImage, postfix)
else:
prefix = pixelType_to_prefix(pixelType)
return getattr(itk.Image, f"{prefix}{postfix}")
def wasm_type_from_mesh_type(itkmesh):
import itk
component = itk.template(itkmesh)[1][0]
mangle = None
pixelType = "Scalar"
pixel_type_components = 1
if component in (itk.F, itk.D):
mangle = component
elif component in [i[1] for i in itk.Array.items()]:
mangle = itk.template(component)[1][0]
pixelType = "Array"
return pixelType, python_to_js(mangle), pixel_type_components
def mesh_type_from_wasm_type(jstype):
import itk
pixelType = jstype["pointPixelType"]
dimension = jstype["dimension"]
pointPixelComponentType = jstype["pointPixelComponentType"]
prefix = pixelType_to_prefix(pixelType)
if pixelType == "Array":
prefix += "D"
else:
prefix = prefix + js_to_python(pointPixelComponentType)
prefix += str(dimension)
return getattr(itk.Mesh, prefix)
def wasm_type_from_pointset_type(itkpointset):
import itk
component = itk.template(itkpointset)[1][0]
mangle = None
pixelType = "Scalar"
pixel_type_components = 1
if component in (itk.F, itk.D):
mangle = component
elif component in [i[1] for i in itk.Array.items()]:
mangle = itk.template(component)[1][0]
pixelType = "Array"
return pixelType, python_to_js(mangle), pixel_type_components
def pointset_type_from_wasm_type(jstype):
import itk
pixelType = jstype["pointPixelType"]
dimension = jstype["dimension"]
pointPixelComponentType = jstype["pointPixelComponentType"]
prefix = pixelType_to_prefix(pixelType)
if pixelType == "Array":
prefix += "D"
else:
prefix = prefix + js_to_python(pointPixelComponentType)
prefix += str(dimension)
return getattr(itk.PointSet, prefix)
|