File: plotting.rst

package info (click to toggle)
intake 0.6.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,552 kB
  • sloc: python: 12,408; makefile: 37; sh: 14
file content (216 lines) | stat: -rw-r--r-- 7,768 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
Plotting
========

Intake provides a plotting API based on the `hvPlot <https://hvplot.holoviz.org/index.html>`_ library, which
closely mirrors the pandas plotting API but generates interactive plots using `HoloViews <http://holoviews.org/>`_
and `Bokeh <http://bokeh.pydata.org/>`_.

The `hvPlot website <https://hvplot.holoviz.org/index.html>`_ provides comprehensive documentation on using the
plotting API to quickly visualize and explore small and large datasets. The main features offered by the plotting API
include:

  * Support for tabular data stored in pandas and dask dataframes
  * Support for gridded data stored in xarray backed nD-arrays
  * Support for plotting large datasets with `datashader <http://datashader.org/>`_

Using Intake alongside hvPlot allows declaratively persisting plot declarations and default options in the regular
catalog.yaml files.

Setup
'''''

For detailed installation instructions see the
`getting started section <https://hvplot.holoviz.org/getting_started/index.html>`_ in the hvPlot documentation.
To start with install hvplot using conda:

.. code-block:: bash

    conda install -c conda-forge hvplot

or using pip:

.. code-block:: bash

    pip install hvplot


Usage
'''''

The plotting API is designed to work well in and outside the Jupyter notebook, however when using it in JupyterLab
the PyViz lab extension must be installed first:

.. code-block:: bash

    jupyter labextension install @pyviz/jupyterlab_pyviz

For detailed instructions on displaying plots in the notebook and from the Python command prompt see the
`hvPlot user guide <https://hvplot.holoviz.org/user_guide/Viewing.html>`_.

Python Command Prompt & Scripts
--------------------------------

Assuming the US Crime dataset has been installed (in the
`intake-examples repo <https://github.com/intake/intake-examples>`_, or from
conda with `conda install -c intake us_crime`):

Once installed the plot API can be used, by using the ``.plot`` method on an intake ``DataSource``:

.. code-block:: python

    import intake
    import hvplot as hp

    crime = intake.cat.us_crime
    columns = ['Burglary rate', 'Larceny-theft rate', 'Robbery rate', 'Violent Crime rate']

    violin = crime.plot.violin(y=columns, group_label='Type of crime',
                               value_label='Rate per 100k', invert=True)
    hp.show(violin)

.. image:: _static/images/plotting_violin.png

Notebook
--------

Inside the notebook plots will display themselves, however the notebook extension must be loaded first. The
extension may be loaded by importing ``hvplot.intake`` module or explicitly loading the holoviews extension,
or by calling ``intake.output_notebook()``:

.. code-block:: python

    # To load the extension run this import
    import hvplot.intake

    # Or load the holoviews extension directly
    import holoviews as hv
    hv.extension('bokeh')

    # convenience function
    import intake
    intake.output_notebook()

    crime = intake.cat.us_crime
    columns = ['Violent Crime rate', 'Robbery rate', 'Burglary rate']
    crime.plot(x='Year', y=columns, value_label='Rate (per 100k people)')

.. raw:: html
   :file: _static/images/plotting_example.html

Predefined Plots
----------------

Some catalogs will define plots appropriate to a specific data source. These will be specified
such that the user gets the right view with the right columns and labels, without having to investigate
the data in detail -- this is ideal for quick-look plotting when browsing sources.

.. code-block:: python

    import intake
    intake.us_crime.plots

Returns `['example']`. This works whether accessing the entry object or the source instance. To visualise

.. code-block:: python

    intake.us_crime.plot.example()


Persisting metadata
'''''''''''''''''''

Intake allows catalog yaml files to declare metadata fields for each data source which are made available alongside
the actual dataset. The plotting API reserves certain fields to define default plot options, to label and annotate
the data fields in a dataset and to declare pre-defined plots.

Declaring defaults
------------------

The first set of metadata used by the plotting API is the `plot` field in the metadata section. Any options found in
the metadata field will apply to all plots generated from that data source, allowing the definition of plotting
defaults. For example when plotting a fairly large dataset such as the NYC Taxi data, it might be desirable to enable
datashader by default ensuring that any plot that supports it is datashaded. The syntax to declare default plot options
is as follows:

.. code-block:: yaml

    sources:
      nyc_taxi:
        description: NYC Taxi dataset
        driver: parquet
        args:
          urlpath: 's3://datashader-data/nyc_taxi_wide.parq'
        metadata:
          plot:
            datashade: true


Declaring data fields
---------------------

The columns of a CSV or parquet file or the coordinates and data variables in a NetCDF file often have shortened, or
cryptic names with underscores. They also do not provide additional information about the units of the data or the
range of values, therefore the catalog yaml specification also provides the ability to define additional information
about the `fields` in a dataset.

Valid attributes that may be defined for the data `fields` include:

- `label`: A readable label for the field which will be used to label axes and widgets
- `unit`: A unit associated with the values inside a data field
- `range`: A range associated with a field declaring limits which will override those computed from the data

Just like the default plot options the `fields` may be declared under the metadata section of a data source:

.. code-block:: yaml

    sources:
      nyc_taxi:
        description: NYC Taxi dataset
        driver: parquet
        args:
          urlpath: 's3://datashader-data/nyc_taxi_wide.parq'
        metadata:
          fields:
            dropoff_x:
              label: Longitude
            dropoff_y:
              label: Latitude
            total_fare:
              label: Fare
              unit: $

Declaring custom plots
----------------------

As shown in the `hvPlot user guide <https://hvplot.holoviz.org/user_guide/Plotting.html>`__, the plotting API
provides a variety of plot types, which can be declared using the `kind` argument or via convenience methods on the
plotting API, e.g. `cat.source.plot.scatter()`. In addition to declaring default plot options and field metadata data
sources may also declare custom plot, which will be made available as methods on the plotting API. In this way a
catalogue may declare any number of custom plots alongside a datasource.

To make this more concrete consider the following custom plot declaration on the `plots` field in the metadata section:

.. code-block:: yaml

    sources:
      nyc_taxi:
        description: NYC Taxi dataset
        driver: parquet
        args:
          urlpath: 's3://datashader-data/nyc_taxi_wide.parq'
        metadata:
          plots:
            dropoff_scatter:
              kind: scatter
              x: dropoff_x
              y: dropoff_y
              datashade: True
              width: 800
              height: 600

This declarative specification creates a new custom plot called `dropoff_scatter`, which will be available on the
catalog under `cat.nyc_taxi.plot.dropoff_scatter()`. Calling this method on the plot API will automatically generate a
datashaded scatter plot of the dropoff locations in the NYC taxi dataset.

Of course the three metadata fields may also be used together, declaring global defaults under the `plot` field,
annotations for the data `fields` under the `fields` key and custom plots via the `plots` field.