File: driver_handle_imp.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (363 lines) | stat: -rw-r--r-- 13,654 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*
 * Copyright (C) 2019-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/core/source/driver/driver_handle_imp.h"

#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/os_interface/os_library.h"

#include "level_zero/core/source/context/context_imp.h"
#include "level_zero/core/source/debugger/debugger_l0.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/driver/driver_imp.h"

#include "driver_version_l0.h"

#include <cstdlib>
#include <cstring>
#include <ctime>
#include <vector>

namespace L0 {

struct DriverHandleImp *GlobalDriver;

ze_result_t DriverHandleImp::createContext(const ze_context_desc_t *desc,
                                           ze_context_handle_t *phContext) {
    ContextImp *context = new ContextImp(this);
    if (nullptr == context) {
        return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
    }

    *phContext = context->toHandle();

    return ZE_RESULT_SUCCESS;
}

NEO::MemoryManager *DriverHandleImp::getMemoryManager() {
    return this->memoryManager;
}

void DriverHandleImp::setMemoryManager(NEO::MemoryManager *memoryManager) {
    this->memoryManager = memoryManager;
}

NEO::SVMAllocsManager *DriverHandleImp::getSvmAllocsManager() {
    return this->svmAllocsManager;
}

ze_result_t DriverHandleImp::getApiVersion(ze_api_version_t *version) {
    *version = ZE_API_VERSION_1_0;
    return ZE_RESULT_SUCCESS;
}

ze_result_t DriverHandleImp::getProperties(ze_driver_properties_t *properties) {
    uint32_t versionMajor = static_cast<uint32_t>(strtoul(L0_PROJECT_VERSION_MAJOR, NULL, 10));
    uint32_t versionMinor = static_cast<uint32_t>(strtoul(L0_PROJECT_VERSION_MINOR, NULL, 10));
    uint32_t versionBuild = static_cast<uint32_t>(strtoul(NEO_VERSION_BUILD, NULL, 10));

    properties->driverVersion = ((versionMajor << 24) & 0xFF000000) |
                                ((versionMinor << 16) & 0x00FF0000) |
                                (versionBuild & 0x0000FFFF);

    uint64_t uniqueId = (properties->driverVersion) | (uuidTimestamp & 0xFFFFFFFF00000000);
    memcpy_s(properties->uuid.id, sizeof(uniqueId), &uniqueId, sizeof(uniqueId));

    return ZE_RESULT_SUCCESS;
}

ze_result_t DriverHandleImp::getIPCProperties(ze_driver_ipc_properties_t *pIPCProperties) {
    pIPCProperties->flags = ZE_IPC_PROPERTY_FLAG_MEMORY;

    return ZE_RESULT_SUCCESS;
}

inline ze_memory_type_t parseUSMType(InternalMemoryType memoryType) {
    switch (memoryType) {
    case InternalMemoryType::SHARED_UNIFIED_MEMORY:
        return ZE_MEMORY_TYPE_SHARED;
    case InternalMemoryType::DEVICE_UNIFIED_MEMORY:
        return ZE_MEMORY_TYPE_DEVICE;
    case InternalMemoryType::HOST_UNIFIED_MEMORY:
        return ZE_MEMORY_TYPE_HOST;
    default:
        return ZE_MEMORY_TYPE_UNKNOWN;
    }

    return ZE_MEMORY_TYPE_UNKNOWN;
}

ze_result_t DriverHandleImp::getExtensionFunctionAddress(const char *pFuncName, void **pfunc) {
    auto funcAddr = extensionFunctionsLookupMap.find(std::string(pFuncName));
    if (funcAddr != extensionFunctionsLookupMap.end()) {
        *pfunc = funcAddr->second;
        return ZE_RESULT_SUCCESS;
    }
    return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}

ze_result_t DriverHandleImp::getExtensionProperties(uint32_t *pCount,
                                                    ze_driver_extension_properties_t *pExtensionProperties) {
    return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}

ze_result_t DriverHandleImp::getMemAllocProperties(const void *ptr,
                                                   ze_memory_allocation_properties_t *pMemAllocProperties,
                                                   ze_device_handle_t *phDevice) {
    auto alloc = svmAllocsManager->getSVMAlloc(ptr);
    if (alloc) {
        pMemAllocProperties->type = parseUSMType(alloc->memoryType);
        pMemAllocProperties->id = alloc->gpuAllocations.getDefaultGraphicsAllocation()->getGpuAddress();

        if (phDevice != nullptr) {
            if (alloc->device == nullptr) {
                *phDevice = nullptr;
            } else {
                auto device = static_cast<NEO::Device *>(alloc->device)->getSpecializedDevice<DeviceImp>();
                DEBUG_BREAK_IF(device == nullptr);
                *phDevice = device->toHandle();
            }
        }
        return ZE_RESULT_SUCCESS;
    }
    pMemAllocProperties->type = ZE_MEMORY_TYPE_UNKNOWN;

    return ZE_RESULT_SUCCESS;
}

DriverHandleImp::~DriverHandleImp() {
    for (auto &device : this->devices) {
        delete device;
    }
    if (this->svmAllocsManager) {
        delete this->svmAllocsManager;
        this->svmAllocsManager = nullptr;
    }
}

uint32_t DriverHandleImp::parseAffinityMask(std::vector<std::unique_ptr<NEO::Device>> &neoDevices) {
    std::vector<std::vector<bool>> affinityMaskBitSet(neoDevices.size());
    for (uint32_t i = 0; i < affinityMaskBitSet.size(); i++) {
        affinityMaskBitSet[i].resize(neoDevices[i]->getNumAvailableDevices());
    }

    size_t pos = 0;
    while (pos < this->affinityMaskString.size()) {
        size_t posNextDot = this->affinityMaskString.find_first_of(".", pos);
        size_t posNextComma = this->affinityMaskString.find_first_of(",", pos);
        std::string rootDeviceString = this->affinityMaskString.substr(pos, std::min(posNextDot, posNextComma) - pos);
        uint32_t rootDeviceIndex = static_cast<uint32_t>(std::stoul(rootDeviceString, nullptr, 0));
        if (rootDeviceIndex < neoDevices.size()) {
            pos += rootDeviceString.size();
            if (posNextDot != std::string::npos &&
                this->affinityMaskString.at(pos) == '.' && posNextDot < posNextComma) {
                pos++;
                std::string subDeviceString = this->affinityMaskString.substr(pos, posNextComma - pos);
                uint32_t subDeviceIndex = static_cast<uint32_t>(std::stoul(subDeviceString, nullptr, 0));
                if (subDeviceIndex < neoDevices[rootDeviceIndex]->getNumAvailableDevices()) {
                    affinityMaskBitSet[rootDeviceIndex][subDeviceIndex] = true;
                }
            } else {
                std::fill(affinityMaskBitSet[rootDeviceIndex].begin(),
                          affinityMaskBitSet[rootDeviceIndex].end(),
                          true);
            }
        }
        if (posNextComma == std::string::npos) {
            break;
        }
        pos = posNextComma + 1;
    }

    uint32_t offset = 0;
    uint32_t affinityMask = 0;
    for (uint32_t i = 0; i < affinityMaskBitSet.size(); i++) {
        for (uint32_t j = 0; j < affinityMaskBitSet[i].size(); j++) {
            if (affinityMaskBitSet[i][j] == true) {
                affinityMask |= (1UL << offset);
            }
            offset++;
        }
    }

    return affinityMask;
}

ze_result_t DriverHandleImp::initialize(std::vector<std::unique_ptr<NEO::Device>> neoDevices) {

    uint32_t affinityMask = std::numeric_limits<uint32_t>::max();

    if (this->affinityMaskString.length() > 0) {
        affinityMask = parseAffinityMask(neoDevices);
    }

    uint32_t currentMaskOffset = 0;
    for (auto &neoDevice : neoDevices) {
        if (!neoDevice->getHardwareInfo().capabilityTable.levelZeroSupported) {
            continue;
        }

        uint32_t currentDeviceMask = (affinityMask >> currentMaskOffset) & ((1UL << neoDevice->getNumAvailableDevices()) - 1);
        bool isDeviceExposed = currentDeviceMask ? true : false;

        currentMaskOffset += neoDevice->getNumAvailableDevices();
        if (!isDeviceExposed) {
            continue;
        }

        if (this->memoryManager == nullptr) {
            this->memoryManager = neoDevice->getMemoryManager();
            if (this->memoryManager == nullptr) {
                return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
            }

            this->svmAllocsManager = new NEO::SVMAllocsManager(memoryManager);
            if (this->svmAllocsManager == nullptr) {
                return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
            }
        }

        if (enableProgramDebugging) {
            UNRECOVERABLE_IF(neoDevice->getDebugger() != nullptr && enableProgramDebugging);
            neoDevice->getExecutionEnvironment()->rootDeviceEnvironments[neoDevice->getRootDeviceIndex()]->debugger = DebuggerL0::create(neoDevice.get());
        }

        auto device = Device::create(this, neoDevice.release(), currentDeviceMask, false);
        this->devices.push_back(device);
    }

    if (this->devices.size() == 0) {
        return ZE_RESULT_ERROR_UNINITIALIZED;
    }

    this->numDevices = static_cast<uint32_t>(this->devices.size());

    extensionFunctionsLookupMap = getExtensionFunctionsLookupMap();

    uuidTimestamp = static_cast<uint64_t>(std::chrono::system_clock::now().time_since_epoch().count());

    return ZE_RESULT_SUCCESS;
}

DriverHandle *DriverHandle::create(std::vector<std::unique_ptr<NEO::Device>> devices, const L0EnvVariables &envVariables) {
    DriverHandleImp *driverHandle = new DriverHandleImp;
    UNRECOVERABLE_IF(nullptr == driverHandle);

    driverHandle->affinityMaskString = envVariables.affinityMask;
    driverHandle->enableProgramDebugging = envVariables.programDebugging;
    driverHandle->enableSysman = envVariables.sysman;

    ze_result_t res = driverHandle->initialize(std::move(devices));
    if (res != ZE_RESULT_SUCCESS) {
        delete driverHandle;
        return nullptr;
    }

    GlobalDriver = driverHandle;

    driverHandle->memoryManager->setForceNonSvmForExternalHostPtr(true);

    return driverHandle;
}

ze_result_t DriverHandleImp::getDevice(uint32_t *pCount, ze_device_handle_t *phDevices) {
    if (*pCount == 0) {
        *pCount = this->numDevices;
        return ZE_RESULT_SUCCESS;
    }

    if (phDevices == nullptr) {
        return ZE_RESULT_ERROR_INVALID_ARGUMENT;
    }

    for (uint32_t i = 0; i < *pCount; i++) {
        phDevices[i] = this->devices[i];
    }

    return ZE_RESULT_SUCCESS;
}

bool DriverHandleImp::findAllocationDataForRange(const void *buffer,
                                                 size_t size,
                                                 NEO::SvmAllocationData **allocData) {
    // Make sure the host buffer does not overlap any existing allocation
    const char *baseAddress = reinterpret_cast<const char *>(buffer);
    NEO::SvmAllocationData *beginAllocData = svmAllocsManager->getSVMAlloc(baseAddress);
    NEO::SvmAllocationData *endAllocData = svmAllocsManager->getSVMAlloc(baseAddress + size - 1);

    if (allocData) {
        if (beginAllocData) {
            *allocData = beginAllocData;
        } else {
            *allocData = endAllocData;
        }
    }

    // Return true if the whole range requested is covered by the same allocation
    if (beginAllocData && endAllocData &&
        (beginAllocData->gpuAllocations.getDefaultGraphicsAllocation() == endAllocData->gpuAllocations.getDefaultGraphicsAllocation())) {
        return true;
    }
    return false;
}

std::vector<NEO::SvmAllocationData *> DriverHandleImp::findAllocationsWithinRange(const void *buffer,
                                                                                  size_t size,
                                                                                  bool *allocationRangeCovered) {
    std::vector<NEO::SvmAllocationData *> allocDataArray;
    const char *baseAddress = reinterpret_cast<const char *>(buffer);
    // Check if the host buffer overlaps any existing allocation
    NEO::SvmAllocationData *beginAllocData = svmAllocsManager->getSVMAlloc(baseAddress);
    NEO::SvmAllocationData *endAllocData = svmAllocsManager->getSVMAlloc(baseAddress + size - 1);

    // Add the allocation that matches the beginning address
    if (beginAllocData) {
        allocDataArray.push_back(beginAllocData);
    }
    // Add the allocation that matches the end address range if there was no beginning allocation
    // or the beginning allocation does not match the ending allocation
    if (endAllocData) {
        if ((beginAllocData && (beginAllocData->gpuAllocations.getDefaultGraphicsAllocation() != endAllocData->gpuAllocations.getDefaultGraphicsAllocation())) ||
            !beginAllocData) {
            allocDataArray.push_back(endAllocData);
        }
    }

    // Return true if the whole range requested is covered by the same allocation
    if (beginAllocData && endAllocData &&
        (beginAllocData->gpuAllocations.getDefaultGraphicsAllocation() == endAllocData->gpuAllocations.getDefaultGraphicsAllocation())) {
        *allocationRangeCovered = true;
    } else {
        *allocationRangeCovered = false;
    }
    return allocDataArray;
}

ze_result_t DriverHandleImp::createEventPool(const ze_event_pool_desc_t *desc,
                                             uint32_t numDevices,
                                             ze_device_handle_t *phDevices,
                                             ze_event_pool_handle_t *phEventPool) {
    EventPool *eventPool = EventPool::create(this, numDevices, phDevices, desc);

    if (eventPool == nullptr) {
        return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
    }

    *phEventPool = eventPool->toHandle();

    return ZE_RESULT_SUCCESS;
}

ze_result_t DriverHandleImp::openEventPoolIpcHandle(ze_ipc_event_pool_handle_t hIpc,
                                                    ze_event_pool_handle_t *phEventPool) {
    return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}

} // namespace L0