File: frequency_imp.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (136 lines) | stat: -rw-r--r-- 4,588 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
/*
 * Copyright (C) 2019-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/tools/source/sysman/frequency/frequency_imp.h"

#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/debug_helpers.h"

#include <cmath>

namespace L0 {

const double FrequencyImp::step = 50.0 / 3; // Step of 16.6666667 Mhz (GEN9 Hardcode)

ze_result_t FrequencyImp::frequencyGetProperties(zes_freq_properties_t *pProperties) {
    *pProperties = zesFrequencyProperties;
    return ZE_RESULT_SUCCESS;
}

ze_result_t FrequencyImp::frequencyGetAvailableClocks(uint32_t *pCount, double *phFrequency) {
    uint32_t numToCopy = std::min(*pCount, numClocks);
    if (0 == *pCount || *pCount > numClocks) {
        *pCount = numClocks;
    }
    if (nullptr != phFrequency) {
        for (uint32_t i = 0; i < numToCopy; i++) {
            phFrequency[i] = pClocks[i];
        }
    }
    return ZE_RESULT_SUCCESS;
}

ze_result_t FrequencyImp::frequencyGetRange(zes_freq_range_t *pLimits) {
    return pOsFrequency->osFrequencyGetRange(pLimits);
}

ze_result_t FrequencyImp::frequencySetRange(const zes_freq_range_t *pLimits) {
    double newMin = round(pLimits->min);
    double newMax = round(pLimits->max);
    bool newMinValid = false, newMaxValid = false;
    for (unsigned int i = 0; i < numClocks; i++) {
        if (newMin == pClocks[i]) {
            newMinValid = true;
        }
        if (newMax == pClocks[i]) {
            newMaxValid = true;
        }
    }
    if (newMin > newMax || !newMinValid || !newMaxValid) {
        return ZE_RESULT_ERROR_INVALID_ARGUMENT;
    }

    return pOsFrequency->osFrequencySetRange(pLimits);
}

ze_result_t FrequencyImp::frequencyGetState(zes_freq_state_t *pState) {
    return pOsFrequency->osFrequencyGetState(pState);
}

ze_result_t FrequencyImp::frequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) {
    return pOsFrequency->osFrequencyGetThrottleTime(pThrottleTime);
}

ze_result_t FrequencyImp::frequencyOcGetCapabilities(zes_oc_capabilities_t *pOcCapabilities) {
    return pOsFrequency->getOcCapabilities(pOcCapabilities);
}

ze_result_t FrequencyImp::frequencyOcGetFrequencyTarget(double *pCurrentOcFrequency) {
    return pOsFrequency->getOcFrequencyTarget(pCurrentOcFrequency);
}

ze_result_t FrequencyImp::frequencyOcSetFrequencyTarget(double currentOcFrequency) {
    return pOsFrequency->setOcFrequencyTarget(currentOcFrequency);
}

ze_result_t FrequencyImp::frequencyOcGetVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) {
    return pOsFrequency->getOcVoltageTarget(pCurrentVoltageTarget, pCurrentVoltageOffset);
}

ze_result_t FrequencyImp::frequencyOcSetVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) {
    return pOsFrequency->setOcVoltageTarget(currentVoltageTarget, currentVoltageOffset);
}

ze_result_t FrequencyImp::frequencyOcGetMode(zes_oc_mode_t *pCurrentOcMode) {
    return pOsFrequency->getOcMode(pCurrentOcMode);
}

ze_result_t FrequencyImp::frequencyOcSetMode(zes_oc_mode_t currentOcMode) {
    return pOsFrequency->setOcMode(currentOcMode);
}

ze_result_t FrequencyImp::frequencyOcGetIccMax(double *pOcIccMax) {
    return pOsFrequency->getOcIccMax(pOcIccMax);
}

ze_result_t FrequencyImp::frequencyOcSetIccMax(double ocIccMax) {
    return pOsFrequency->setOcIccMax(ocIccMax);
}

ze_result_t FrequencyImp::frequencyOcGeTjMax(double *pOcTjMax) {
    return pOsFrequency->getOcTjMax(pOcTjMax);
}

ze_result_t FrequencyImp::frequencyOcSetTjMax(double ocTjMax) {
    return pOsFrequency->setOcTjMax(ocTjMax);
}

void FrequencyImp::init() {
    pOsFrequency->osFrequencyGetProperties(zesFrequencyProperties);
    double freqRange = zesFrequencyProperties.max - zesFrequencyProperties.min;
    numClocks = static_cast<uint32_t>(round(freqRange / step)) + 1;
    pClocks = new double[numClocks];
    for (unsigned int i = 0; i < numClocks; i++) {
        pClocks[i] = round(zesFrequencyProperties.min + (step * i));
    }
}

FrequencyImp::FrequencyImp(OsSysman *pOsSysman, ze_device_handle_t handle, zes_freq_domain_t frequencyDomainNumber) : deviceHandle(handle) {
    ze_device_properties_t deviceProperties = {};
    Device::fromHandle(deviceHandle)->getProperties(&deviceProperties);
    pOsFrequency = OsFrequency::create(pOsSysman, deviceProperties.flags & ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE, deviceProperties.subdeviceId, frequencyDomainNumber);
    UNRECOVERABLE_IF(nullptr == pOsFrequency);

    init();
}

FrequencyImp::~FrequencyImp() {
    delete pOsFrequency;
    delete[] pClocks;
}

} // namespace L0