1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/*
* Copyright (C) 2019-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/frequency/frequency_imp.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/debug_helpers.h"
#include <cmath>
namespace L0 {
const double FrequencyImp::step = 50.0 / 3; // Step of 16.6666667 Mhz (GEN9 Hardcode)
ze_result_t FrequencyImp::frequencyGetProperties(zes_freq_properties_t *pProperties) {
*pProperties = zesFrequencyProperties;
return ZE_RESULT_SUCCESS;
}
ze_result_t FrequencyImp::frequencyGetAvailableClocks(uint32_t *pCount, double *phFrequency) {
uint32_t numToCopy = std::min(*pCount, numClocks);
if (0 == *pCount || *pCount > numClocks) {
*pCount = numClocks;
}
if (nullptr != phFrequency) {
for (uint32_t i = 0; i < numToCopy; i++) {
phFrequency[i] = pClocks[i];
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t FrequencyImp::frequencyGetRange(zes_freq_range_t *pLimits) {
return pOsFrequency->osFrequencyGetRange(pLimits);
}
ze_result_t FrequencyImp::frequencySetRange(const zes_freq_range_t *pLimits) {
double newMin = round(pLimits->min);
double newMax = round(pLimits->max);
bool newMinValid = false, newMaxValid = false;
for (unsigned int i = 0; i < numClocks; i++) {
if (newMin == pClocks[i]) {
newMinValid = true;
}
if (newMax == pClocks[i]) {
newMaxValid = true;
}
}
if (newMin > newMax || !newMinValid || !newMaxValid) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
return pOsFrequency->osFrequencySetRange(pLimits);
}
ze_result_t FrequencyImp::frequencyGetState(zes_freq_state_t *pState) {
return pOsFrequency->osFrequencyGetState(pState);
}
ze_result_t FrequencyImp::frequencyGetThrottleTime(zes_freq_throttle_time_t *pThrottleTime) {
return pOsFrequency->osFrequencyGetThrottleTime(pThrottleTime);
}
ze_result_t FrequencyImp::frequencyOcGetCapabilities(zes_oc_capabilities_t *pOcCapabilities) {
return pOsFrequency->getOcCapabilities(pOcCapabilities);
}
ze_result_t FrequencyImp::frequencyOcGetFrequencyTarget(double *pCurrentOcFrequency) {
return pOsFrequency->getOcFrequencyTarget(pCurrentOcFrequency);
}
ze_result_t FrequencyImp::frequencyOcSetFrequencyTarget(double currentOcFrequency) {
return pOsFrequency->setOcFrequencyTarget(currentOcFrequency);
}
ze_result_t FrequencyImp::frequencyOcGetVoltageTarget(double *pCurrentVoltageTarget, double *pCurrentVoltageOffset) {
return pOsFrequency->getOcVoltageTarget(pCurrentVoltageTarget, pCurrentVoltageOffset);
}
ze_result_t FrequencyImp::frequencyOcSetVoltageTarget(double currentVoltageTarget, double currentVoltageOffset) {
return pOsFrequency->setOcVoltageTarget(currentVoltageTarget, currentVoltageOffset);
}
ze_result_t FrequencyImp::frequencyOcGetMode(zes_oc_mode_t *pCurrentOcMode) {
return pOsFrequency->getOcMode(pCurrentOcMode);
}
ze_result_t FrequencyImp::frequencyOcSetMode(zes_oc_mode_t currentOcMode) {
return pOsFrequency->setOcMode(currentOcMode);
}
ze_result_t FrequencyImp::frequencyOcGetIccMax(double *pOcIccMax) {
return pOsFrequency->getOcIccMax(pOcIccMax);
}
ze_result_t FrequencyImp::frequencyOcSetIccMax(double ocIccMax) {
return pOsFrequency->setOcIccMax(ocIccMax);
}
ze_result_t FrequencyImp::frequencyOcGeTjMax(double *pOcTjMax) {
return pOsFrequency->getOcTjMax(pOcTjMax);
}
ze_result_t FrequencyImp::frequencyOcSetTjMax(double ocTjMax) {
return pOsFrequency->setOcTjMax(ocTjMax);
}
void FrequencyImp::init() {
pOsFrequency->osFrequencyGetProperties(zesFrequencyProperties);
double freqRange = zesFrequencyProperties.max - zesFrequencyProperties.min;
numClocks = static_cast<uint32_t>(round(freqRange / step)) + 1;
pClocks = new double[numClocks];
for (unsigned int i = 0; i < numClocks; i++) {
pClocks[i] = round(zesFrequencyProperties.min + (step * i));
}
}
FrequencyImp::FrequencyImp(OsSysman *pOsSysman, ze_device_handle_t handle, zes_freq_domain_t frequencyDomainNumber) : deviceHandle(handle) {
ze_device_properties_t deviceProperties = {};
Device::fromHandle(deviceHandle)->getProperties(&deviceProperties);
pOsFrequency = OsFrequency::create(pOsSysman, deviceProperties.flags & ZE_DEVICE_PROPERTY_FLAG_SUBDEVICE, deviceProperties.subdeviceId, frequencyDomainNumber);
UNRECOVERABLE_IF(nullptr == pOsFrequency);
init();
}
FrequencyImp::~FrequencyImp() {
delete pOsFrequency;
delete[] pClocks;
}
} // namespace L0
|