1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
|
/*
* Copyright (C) 2018-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/source/command_queue/command_queue.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/array_count.h"
#include "shared/source/helpers/engine_node_helper.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/utilities/api_intercept.h"
#include "shared/source/utilities/tag_allocator.h"
#include "opencl/source/built_ins/builtins_dispatch_builder.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/context/context.h"
#include "opencl/source/device_queue/device_queue.h"
#include "opencl/source/event/event_builder.h"
#include "opencl/source/event/user_event.h"
#include "opencl/source/gtpin/gtpin_notify.h"
#include "opencl/source/helpers/convert_color.h"
#include "opencl/source/helpers/hardware_commands_helper.h"
#include "opencl/source/helpers/mipmap.h"
#include "opencl/source/helpers/queue_helpers.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/mem_obj/image.h"
#include "opencl/source/program/printf_handler.h"
#include "CL/cl_ext.h"
#include <map>
namespace NEO {
// Global table of create functions
CommandQueueCreateFunc commandQueueFactory[IGFX_MAX_CORE] = {};
CommandQueue *CommandQueue::create(Context *context,
ClDevice *device,
const cl_queue_properties *properties,
bool internalUsage,
cl_int &retVal) {
retVal = CL_SUCCESS;
auto funcCreate = commandQueueFactory[device->getRenderCoreFamily()];
DEBUG_BREAK_IF(nullptr == funcCreate);
return funcCreate(context, device, properties, internalUsage);
}
CommandQueue::CommandQueue(Context *context, ClDevice *device, const cl_queue_properties *properties)
: context(context), device(device) {
if (context) {
context->incRefInternal();
}
commandQueueProperties = getCmdQueueProperties<cl_command_queue_properties>(properties);
flushStamp.reset(new FlushStampTracker(true));
if (device) {
auto hwInfo = device->getHardwareInfo();
gpgpuEngine = &device->getDefaultEngine();
if (hwInfo.capabilityTable.blitterOperationsSupported || gpgpuEngine->commandStreamReceiver->peekTimestampPacketWriteEnabled()) {
timestampPacketContainer = std::make_unique<TimestampPacketContainer>();
}
if (hwInfo.capabilityTable.blitterOperationsSupported) {
auto &selectorCopyEngine = device->getDeviceById(0)->getSelectorCopyEngine();
bcsEngine = &device->getDeviceById(0)->getEngine(EngineHelpers::getBcsEngineType(hwInfo, selectorCopyEngine), false, false);
}
}
storeProperties(properties);
processProperties(properties);
}
CommandQueue::~CommandQueue() {
if (virtualEvent) {
UNRECOVERABLE_IF(this->virtualEvent->getCommandQueue() != this && this->virtualEvent->getCommandQueue() != nullptr);
virtualEvent->decRefInternal();
}
if (device) {
auto storageForAllocation = gpgpuEngine->commandStreamReceiver->getInternalAllocationStorage();
if (commandStream) {
storageForAllocation->storeAllocation(std::unique_ptr<GraphicsAllocation>(commandStream->getGraphicsAllocation()), REUSABLE_ALLOCATION);
}
delete commandStream;
if (this->perfCountersEnabled) {
device->getPerformanceCounters()->shutdown();
}
}
timestampPacketContainer.reset();
//for normal queue, decrement ref count on context
//special queue is owned by context so ref count doesn't have to be decremented
if (context && !isSpecialCommandQueue) {
context->decRefInternal();
}
}
CommandStreamReceiver &CommandQueue::getGpgpuCommandStreamReceiver() const {
return *gpgpuEngine->commandStreamReceiver;
}
CommandStreamReceiver *CommandQueue::getBcsCommandStreamReceiver() const {
if (bcsEngine) {
return bcsEngine->commandStreamReceiver;
}
return nullptr;
}
CommandStreamReceiver &CommandQueue::getCommandStreamReceiverByCommandType(cl_command_type cmdType) const {
if (blitEnqueueAllowed(cmdType)) {
auto csr = getBcsCommandStreamReceiver();
UNRECOVERABLE_IF(!csr);
return *csr;
}
return getGpgpuCommandStreamReceiver();
}
Device &CommandQueue::getDevice() const noexcept {
return device->getDevice();
}
uint32_t CommandQueue::getHwTag() const {
uint32_t tag = *getHwTagAddress();
return tag;
}
volatile uint32_t *CommandQueue::getHwTagAddress() const {
return getGpgpuCommandStreamReceiver().getTagAddress();
}
bool CommandQueue::isCompleted(uint32_t gpgpuTaskCount, uint32_t bcsTaskCount) const {
uint32_t gpgpuHwTag = getHwTag();
DEBUG_BREAK_IF(gpgpuHwTag == CompletionStamp::notReady);
if (gpgpuHwTag >= gpgpuTaskCount) {
if (auto bcsCsr = getBcsCommandStreamReceiver()) {
return (*bcsCsr->getTagAddress()) >= bcsTaskCount;
}
return true;
}
return false;
}
void CommandQueue::waitUntilComplete(uint32_t gpgpuTaskCountToWait, uint32_t bcsTaskCountToWait, FlushStamp flushStampToWait, bool useQuickKmdSleep) {
WAIT_ENTER()
DBG_LOG(LogTaskCounts, __FUNCTION__, "Waiting for taskCount:", gpgpuTaskCountToWait);
DBG_LOG(LogTaskCounts, __FUNCTION__, "Line: ", __LINE__, "Current taskCount:", getHwTag());
bool forcePowerSavingMode = this->throttle == QueueThrottle::LOW;
getGpgpuCommandStreamReceiver().waitForTaskCountWithKmdNotifyFallback(gpgpuTaskCountToWait, flushStampToWait,
useQuickKmdSleep, forcePowerSavingMode);
DEBUG_BREAK_IF(getHwTag() < gpgpuTaskCountToWait);
if (gtpinIsGTPinInitialized()) {
gtpinNotifyTaskCompletion(gpgpuTaskCountToWait);
}
if (auto bcsCsr = getBcsCommandStreamReceiver()) {
bcsCsr->waitForTaskCountWithKmdNotifyFallback(bcsTaskCountToWait, 0, false, false);
bcsCsr->waitForTaskCountAndCleanTemporaryAllocationList(bcsTaskCountToWait);
}
getGpgpuCommandStreamReceiver().waitForTaskCountAndCleanTemporaryAllocationList(gpgpuTaskCountToWait);
WAIT_LEAVE()
}
bool CommandQueue::isQueueBlocked() {
TakeOwnershipWrapper<CommandQueue> takeOwnershipWrapper(*this);
//check if we have user event and if so, if it is in blocked state.
if (this->virtualEvent) {
auto executionStatus = this->virtualEvent->peekExecutionStatus();
if (executionStatus <= CL_SUBMITTED) {
UNRECOVERABLE_IF(this->virtualEvent == nullptr);
if (this->virtualEvent->isStatusCompletedByTermination(executionStatus) == false) {
taskCount = this->virtualEvent->peekTaskCount();
flushStamp->setStamp(this->virtualEvent->flushStamp->peekStamp());
taskLevel = this->virtualEvent->taskLevel;
// If this isn't an OOQ, update the taskLevel for the queue
if (!isOOQEnabled()) {
taskLevel++;
}
} else {
//at this point we may reset queue TaskCount, since all command previous to this were aborted
taskCount = 0;
flushStamp->setStamp(0);
taskLevel = getGpgpuCommandStreamReceiver().peekTaskLevel();
}
FileLoggerInstance().log(DebugManager.flags.EventsDebugEnable.get(), "isQueueBlocked taskLevel change from", taskLevel, "to new from virtualEvent", this->virtualEvent, "new tasklevel", this->virtualEvent->taskLevel.load());
//close the access to virtual event, driver added only 1 ref count.
this->virtualEvent->decRefInternal();
this->virtualEvent = nullptr;
return false;
}
return true;
}
return false;
}
cl_int CommandQueue::getCommandQueueInfo(cl_command_queue_info paramName,
size_t paramValueSize,
void *paramValue,
size_t *paramValueSizeRet) {
return getQueueInfo<CommandQueue>(this, paramName, paramValueSize, paramValue, paramValueSizeRet);
}
uint32_t CommandQueue::getTaskLevelFromWaitList(uint32_t taskLevel,
cl_uint numEventsInWaitList,
const cl_event *eventWaitList) {
for (auto iEvent = 0u; iEvent < numEventsInWaitList; ++iEvent) {
auto pEvent = (Event *)(eventWaitList[iEvent]);
uint32_t eventTaskLevel = pEvent->taskLevel;
taskLevel = std::max(taskLevel, eventTaskLevel);
}
return taskLevel;
}
LinearStream &CommandQueue::getCS(size_t minRequiredSize) {
DEBUG_BREAK_IF(nullptr == device);
if (!commandStream) {
commandStream = new LinearStream(nullptr);
}
minRequiredSize += CSRequirements::minCommandQueueCommandStreamSize;
constexpr static auto additionalAllocationSize = CSRequirements::minCommandQueueCommandStreamSize + CSRequirements::csOverfetchSize;
getGpgpuCommandStreamReceiver().ensureCommandBufferAllocation(*commandStream, minRequiredSize, additionalAllocationSize);
return *commandStream;
}
cl_int CommandQueue::enqueueAcquireSharedObjects(cl_uint numObjects, const cl_mem *memObjects, cl_uint numEventsInWaitList, const cl_event *eventWaitList, cl_event *oclEvent, cl_uint cmdType) {
if ((memObjects == nullptr && numObjects != 0) || (memObjects != nullptr && numObjects == 0)) {
return CL_INVALID_VALUE;
}
for (unsigned int object = 0; object < numObjects; object++) {
auto memObject = castToObject<MemObj>(memObjects[object]);
if (memObject == nullptr || memObject->peekSharingHandler() == nullptr) {
return CL_INVALID_MEM_OBJECT;
}
int result = memObject->peekSharingHandler()->acquire(memObject, getDevice().getRootDeviceIndex());
if (result != CL_SUCCESS) {
return result;
}
memObject->acquireCount++;
}
auto status = enqueueMarkerWithWaitList(
numEventsInWaitList,
eventWaitList,
oclEvent);
if (oclEvent) {
castToObjectOrAbort<Event>(*oclEvent)->setCmdType(cmdType);
}
return status;
}
cl_int CommandQueue::enqueueReleaseSharedObjects(cl_uint numObjects, const cl_mem *memObjects, cl_uint numEventsInWaitList, const cl_event *eventWaitList, cl_event *oclEvent, cl_uint cmdType) {
if ((memObjects == nullptr && numObjects != 0) || (memObjects != nullptr && numObjects == 0)) {
return CL_INVALID_VALUE;
}
for (unsigned int object = 0; object < numObjects; object++) {
auto memObject = castToObject<MemObj>(memObjects[object]);
if (memObject == nullptr || memObject->peekSharingHandler() == nullptr) {
return CL_INVALID_MEM_OBJECT;
}
memObject->peekSharingHandler()->release(memObject, getDevice().getRootDeviceIndex());
DEBUG_BREAK_IF(memObject->acquireCount <= 0);
memObject->acquireCount--;
}
auto status = enqueueMarkerWithWaitList(
numEventsInWaitList,
eventWaitList,
oclEvent);
if (oclEvent) {
castToObjectOrAbort<Event>(*oclEvent)->setCmdType(cmdType);
}
return status;
}
void CommandQueue::updateFromCompletionStamp(const CompletionStamp &completionStamp, Event *outEvent) {
DEBUG_BREAK_IF(this->taskLevel > completionStamp.taskLevel);
DEBUG_BREAK_IF(this->taskCount > completionStamp.taskCount);
if (completionStamp.taskCount != CompletionStamp::notReady) {
taskCount = completionStamp.taskCount;
}
flushStamp->setStamp(completionStamp.flushStamp);
this->taskLevel = completionStamp.taskLevel;
if (outEvent) {
outEvent->updateCompletionStamp(completionStamp.taskCount, bcsTaskCount, completionStamp.taskLevel, completionStamp.flushStamp);
FileLoggerInstance().log(DebugManager.flags.EventsDebugEnable.get(), "updateCompletionStamp Event", outEvent, "taskLevel", outEvent->taskLevel.load());
}
}
bool CommandQueue::setPerfCountersEnabled() {
DEBUG_BREAK_IF(device == nullptr);
auto perfCounters = device->getPerformanceCounters();
bool isCcsEngine = EngineHelpers::isCcs(getGpgpuEngine().osContext->getEngineType());
perfCountersEnabled = perfCounters->enable(isCcsEngine);
if (!perfCountersEnabled) {
perfCounters->shutdown();
}
return perfCountersEnabled;
}
PerformanceCounters *CommandQueue::getPerfCounters() {
return device->getPerformanceCounters();
}
cl_int CommandQueue::enqueueWriteMemObjForUnmap(MemObj *memObj, void *mappedPtr, EventsRequest &eventsRequest) {
cl_int retVal = CL_SUCCESS;
MapInfo unmapInfo;
if (!memObj->findMappedPtr(mappedPtr, unmapInfo)) {
return CL_INVALID_VALUE;
}
if (!unmapInfo.readOnly) {
memObj->getMapAllocation(getDevice().getRootDeviceIndex())->setAubWritable(true, GraphicsAllocation::defaultBank);
memObj->getMapAllocation(getDevice().getRootDeviceIndex())->setTbxWritable(true, GraphicsAllocation::defaultBank);
if (memObj->peekClMemObjType() == CL_MEM_OBJECT_BUFFER) {
auto buffer = castToObject<Buffer>(memObj);
retVal = enqueueWriteBuffer(buffer, CL_FALSE, unmapInfo.offset[0], unmapInfo.size[0], mappedPtr, memObj->getMapAllocation(getDevice().getRootDeviceIndex()),
eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, eventsRequest.outEvent);
} else {
auto image = castToObjectOrAbort<Image>(memObj);
size_t writeOrigin[4] = {unmapInfo.offset[0], unmapInfo.offset[1], unmapInfo.offset[2], 0};
auto mipIdx = getMipLevelOriginIdx(image->peekClMemObjType());
UNRECOVERABLE_IF(mipIdx >= 4);
writeOrigin[mipIdx] = unmapInfo.mipLevel;
retVal = enqueueWriteImage(image, CL_FALSE, writeOrigin, &unmapInfo.size[0],
image->getHostPtrRowPitch(), image->getHostPtrSlicePitch(), mappedPtr, memObj->getMapAllocation(getDevice().getRootDeviceIndex()),
eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, eventsRequest.outEvent);
}
} else {
retVal = enqueueMarkerWithWaitList(eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, eventsRequest.outEvent);
}
if (retVal == CL_SUCCESS) {
memObj->removeMappedPtr(mappedPtr);
if (eventsRequest.outEvent) {
auto event = castToObject<Event>(*eventsRequest.outEvent);
event->setCmdType(CL_COMMAND_UNMAP_MEM_OBJECT);
}
}
return retVal;
}
void *CommandQueue::enqueueReadMemObjForMap(TransferProperties &transferProperties, EventsRequest &eventsRequest, cl_int &errcodeRet) {
void *basePtr = transferProperties.memObj->getBasePtrForMap(getDevice().getRootDeviceIndex());
size_t mapPtrOffset = transferProperties.memObj->calculateOffsetForMapping(transferProperties.offset) + transferProperties.mipPtrOffset;
if (transferProperties.memObj->peekClMemObjType() == CL_MEM_OBJECT_BUFFER) {
mapPtrOffset += transferProperties.memObj->getOffset();
}
void *returnPtr = ptrOffset(basePtr, mapPtrOffset);
if (!transferProperties.memObj->addMappedPtr(returnPtr, transferProperties.memObj->calculateMappedPtrLength(transferProperties.size),
transferProperties.mapFlags, transferProperties.size, transferProperties.offset, transferProperties.mipLevel)) {
errcodeRet = CL_INVALID_OPERATION;
return nullptr;
}
if (transferProperties.memObj->peekClMemObjType() == CL_MEM_OBJECT_BUFFER) {
auto buffer = castToObject<Buffer>(transferProperties.memObj);
errcodeRet = enqueueReadBuffer(buffer, transferProperties.blocking, transferProperties.offset[0], transferProperties.size[0],
returnPtr, transferProperties.memObj->getMapAllocation(getDevice().getRootDeviceIndex()), eventsRequest.numEventsInWaitList,
eventsRequest.eventWaitList, eventsRequest.outEvent);
} else {
auto image = castToObjectOrAbort<Image>(transferProperties.memObj);
size_t readOrigin[4] = {transferProperties.offset[0], transferProperties.offset[1], transferProperties.offset[2], 0};
auto mipIdx = getMipLevelOriginIdx(image->peekClMemObjType());
UNRECOVERABLE_IF(mipIdx >= 4);
readOrigin[mipIdx] = transferProperties.mipLevel;
errcodeRet = enqueueReadImage(image, transferProperties.blocking, readOrigin, &transferProperties.size[0],
image->getHostPtrRowPitch(), image->getHostPtrSlicePitch(),
returnPtr, transferProperties.memObj->getMapAllocation(getDevice().getRootDeviceIndex()), eventsRequest.numEventsInWaitList,
eventsRequest.eventWaitList, eventsRequest.outEvent);
}
if (errcodeRet != CL_SUCCESS) {
transferProperties.memObj->removeMappedPtr(returnPtr);
return nullptr;
}
if (eventsRequest.outEvent) {
auto event = castToObject<Event>(*eventsRequest.outEvent);
event->setCmdType(transferProperties.cmdType);
}
return returnPtr;
}
void *CommandQueue::enqueueMapMemObject(TransferProperties &transferProperties, EventsRequest &eventsRequest, cl_int &errcodeRet) {
if (transferProperties.memObj->mappingOnCpuAllowed()) {
return cpuDataTransferHandler(transferProperties, eventsRequest, errcodeRet);
} else {
return enqueueReadMemObjForMap(transferProperties, eventsRequest, errcodeRet);
}
}
cl_int CommandQueue::enqueueUnmapMemObject(TransferProperties &transferProperties, EventsRequest &eventsRequest) {
cl_int retVal = CL_SUCCESS;
if (transferProperties.memObj->mappingOnCpuAllowed()) {
cpuDataTransferHandler(transferProperties, eventsRequest, retVal);
} else {
retVal = enqueueWriteMemObjForUnmap(transferProperties.memObj, transferProperties.ptr, eventsRequest);
}
return retVal;
}
void *CommandQueue::enqueueMapBuffer(Buffer *buffer, cl_bool blockingMap,
cl_map_flags mapFlags, size_t offset,
size_t size, cl_uint numEventsInWaitList,
const cl_event *eventWaitList, cl_event *event,
cl_int &errcodeRet) {
TransferProperties transferProperties(buffer, CL_COMMAND_MAP_BUFFER, mapFlags, blockingMap != CL_FALSE, &offset, &size, nullptr, false, getDevice().getRootDeviceIndex());
EventsRequest eventsRequest(numEventsInWaitList, eventWaitList, event);
return enqueueMapMemObject(transferProperties, eventsRequest, errcodeRet);
}
void *CommandQueue::enqueueMapImage(Image *image, cl_bool blockingMap,
cl_map_flags mapFlags, const size_t *origin,
const size_t *region, size_t *imageRowPitch,
size_t *imageSlicePitch,
cl_uint numEventsInWaitList,
const cl_event *eventWaitList, cl_event *event,
cl_int &errcodeRet) {
TransferProperties transferProperties(image, CL_COMMAND_MAP_IMAGE, mapFlags, blockingMap != CL_FALSE,
const_cast<size_t *>(origin), const_cast<size_t *>(region), nullptr, false, getDevice().getRootDeviceIndex());
EventsRequest eventsRequest(numEventsInWaitList, eventWaitList, event);
if (image->isMemObjZeroCopy() && image->mappingOnCpuAllowed()) {
GetInfoHelper::set(imageSlicePitch, image->getImageDesc().image_slice_pitch);
if (image->getImageDesc().image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) {
// There are differences in qPitch programming between Gen8 vs Gen9+ devices.
// For Gen8 qPitch is distance in rows while Gen9+ it is in pixels.
// Minimum value of qPitch is 4 and this causes slicePitch = 4*rowPitch on Gen8.
// To allow zero-copy we have to tell what is correct value rowPitch which should equal to slicePitch.
GetInfoHelper::set(imageRowPitch, image->getImageDesc().image_slice_pitch);
} else {
GetInfoHelper::set(imageRowPitch, image->getImageDesc().image_row_pitch);
}
} else {
GetInfoHelper::set(imageSlicePitch, image->getHostPtrSlicePitch());
GetInfoHelper::set(imageRowPitch, image->getHostPtrRowPitch());
}
if (Image::hasSlices(image->peekClMemObjType()) == false) {
GetInfoHelper::set(imageSlicePitch, static_cast<size_t>(0));
}
return enqueueMapMemObject(transferProperties, eventsRequest, errcodeRet);
}
cl_int CommandQueue::enqueueUnmapMemObject(MemObj *memObj, void *mappedPtr, cl_uint numEventsInWaitList, const cl_event *eventWaitList, cl_event *event) {
TransferProperties transferProperties(memObj, CL_COMMAND_UNMAP_MEM_OBJECT, 0, false, nullptr, nullptr, mappedPtr, false, getDevice().getRootDeviceIndex());
EventsRequest eventsRequest(numEventsInWaitList, eventWaitList, event);
return enqueueUnmapMemObject(transferProperties, eventsRequest);
}
void CommandQueue::enqueueBlockedMapUnmapOperation(const cl_event *eventWaitList,
size_t numEventsInWaitlist,
MapOperationType opType,
MemObj *memObj,
MemObjSizeArray ©Size,
MemObjOffsetArray ©Offset,
bool readOnly,
EventBuilder &externalEventBuilder) {
EventBuilder internalEventBuilder;
EventBuilder *eventBuilder;
// check if event will be exposed externally
if (externalEventBuilder.getEvent()) {
externalEventBuilder.getEvent()->incRefInternal();
eventBuilder = &externalEventBuilder;
} else {
// it will be an internal event
internalEventBuilder.create<VirtualEvent>(this, context);
eventBuilder = &internalEventBuilder;
}
//store task data in event
auto cmd = std::unique_ptr<Command>(new CommandMapUnmap(opType, *memObj, copySize, copyOffset, readOnly, *this));
eventBuilder->getEvent()->setCommand(std::move(cmd));
//bind output event with input events
eventBuilder->addParentEvents(ArrayRef<const cl_event>(eventWaitList, numEventsInWaitlist));
eventBuilder->addParentEvent(this->virtualEvent);
eventBuilder->finalize();
if (this->virtualEvent) {
this->virtualEvent->decRefInternal();
}
this->virtualEvent = eventBuilder->getEvent();
}
bool CommandQueue::setupDebugSurface(Kernel *kernel) {
auto debugSurface = getGpgpuCommandStreamReceiver().getDebugSurfaceAllocation();
DEBUG_BREAK_IF(!kernel->requiresSshForBuffers());
auto surfaceState = ptrOffset(reinterpret_cast<uintptr_t *>(kernel->getSurfaceStateHeap()),
kernel->getKernelInfo().patchInfo.pAllocateSystemThreadSurface->Offset);
void *addressToPatch = reinterpret_cast<void *>(debugSurface->getGpuAddress());
size_t sizeToPatch = debugSurface->getUnderlyingBufferSize();
Buffer::setSurfaceState(&device->getDevice(), surfaceState, sizeToPatch, addressToPatch, 0, debugSurface, 0, 0);
return true;
}
IndirectHeap &CommandQueue::getIndirectHeap(IndirectHeap::Type heapType, size_t minRequiredSize) {
return getGpgpuCommandStreamReceiver().getIndirectHeap(heapType, minRequiredSize);
}
void CommandQueue::allocateHeapMemory(IndirectHeap::Type heapType, size_t minRequiredSize, IndirectHeap *&indirectHeap) {
getGpgpuCommandStreamReceiver().allocateHeapMemory(heapType, minRequiredSize, indirectHeap);
}
void CommandQueue::releaseIndirectHeap(IndirectHeap::Type heapType) {
getGpgpuCommandStreamReceiver().releaseIndirectHeap(heapType);
}
void CommandQueue::obtainNewTimestampPacketNodes(size_t numberOfNodes, TimestampPacketContainer &previousNodes, bool clearAllDependencies, bool blitEnqueue) {
auto allocator = blitEnqueue ? getBcsCommandStreamReceiver()->getTimestampPacketAllocator()
: getGpgpuCommandStreamReceiver().getTimestampPacketAllocator();
previousNodes.swapNodes(*timestampPacketContainer);
if ((previousNodes.peekNodes().size() > 0) && (previousNodes.peekNodes()[0]->getAllocator() != allocator)) {
clearAllDependencies = false;
}
previousNodes.resolveDependencies(clearAllDependencies);
DEBUG_BREAK_IF(timestampPacketContainer->peekNodes().size() > 0);
for (size_t i = 0; i < numberOfNodes; i++) {
timestampPacketContainer->add(allocator->getTag());
}
}
size_t CommandQueue::estimateTimestampPacketNodesCount(const MultiDispatchInfo &dispatchInfo) const {
size_t nodesCount = dispatchInfo.size();
auto mainKernel = dispatchInfo.peekMainKernel();
if (obtainTimestampPacketForCacheFlush(mainKernel->requiresCacheFlushCommand(*this))) {
nodesCount++;
}
return nodesCount;
}
bool CommandQueue::bufferCpuCopyAllowed(Buffer *buffer, cl_command_type commandType, cl_bool blocking, size_t size, void *ptr,
cl_uint numEventsInWaitList, const cl_event *eventWaitList) {
auto debugVariableSet = false;
// Requested by debug variable or allowed by Buffer
if (CL_COMMAND_READ_BUFFER == commandType && DebugManager.flags.DoCpuCopyOnReadBuffer.get() != -1) {
if (DebugManager.flags.DoCpuCopyOnReadBuffer.get() == 0) {
return false;
}
debugVariableSet = true;
}
if (CL_COMMAND_WRITE_BUFFER == commandType && DebugManager.flags.DoCpuCopyOnWriteBuffer.get() != -1) {
if (DebugManager.flags.DoCpuCopyOnWriteBuffer.get() == 0) {
return false;
}
debugVariableSet = true;
}
//if we are blocked by user events, we can't service the call on CPU
if (Event::checkUserEventDependencies(numEventsInWaitList, eventWaitList)) {
return false;
}
//check if buffer is compatible
if (!buffer->isReadWriteOnCpuAllowed(device->getRootDeviceIndex())) {
return false;
}
if (buffer->getMemoryManager() && buffer->getMemoryManager()->isCpuCopyRequired(ptr)) {
return true;
}
if (debugVariableSet) {
return true;
}
//non blocking transfers are not expected to be serviced by CPU
//we do not want to artifically stall the pipeline to allow CPU access
if (blocking == CL_FALSE) {
return false;
}
//check if it is beneficial to do transfer on CPU
if (!buffer->isReadWriteOnCpuPreferred(ptr, size, getDevice())) {
return false;
}
//make sure that event wait list is empty
if (numEventsInWaitList == 0) {
return true;
}
return false;
}
bool CommandQueue::queueDependenciesClearRequired() const {
return isOOQEnabled() || DebugManager.flags.OmitTimestampPacketDependencies.get();
}
bool CommandQueue::blitEnqueueAllowed(cl_command_type cmdType) const {
auto blitAllowed = device->getHardwareInfo().capabilityTable.blitterOperationsSupported || this->isCopyOnly;
if (DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.get() != -1) {
blitAllowed &= static_cast<bool>(DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.get());
}
switch (cmdType) {
case CL_COMMAND_READ_BUFFER:
case CL_COMMAND_WRITE_BUFFER:
case CL_COMMAND_COPY_BUFFER:
case CL_COMMAND_READ_BUFFER_RECT:
case CL_COMMAND_WRITE_BUFFER_RECT:
case CL_COMMAND_COPY_BUFFER_RECT:
case CL_COMMAND_SVM_MEMCPY:
case CL_COMMAND_READ_IMAGE:
case CL_COMMAND_WRITE_IMAGE:
return blitAllowed;
default:
return false;
}
}
bool CommandQueue::isBlockedCommandStreamRequired(uint32_t commandType, const EventsRequest &eventsRequest, bool blockedQueue) const {
if (!blockedQueue) {
return false;
}
if (isCacheFlushCommand(commandType) || !isCommandWithoutKernel(commandType)) {
return true;
}
if ((CL_COMMAND_BARRIER == commandType || CL_COMMAND_MARKER == commandType) &&
getGpgpuCommandStreamReceiver().peekTimestampPacketWriteEnabled()) {
for (size_t i = 0; i < eventsRequest.numEventsInWaitList; i++) {
auto waitlistEvent = castToObjectOrAbort<Event>(eventsRequest.eventWaitList[i]);
if (waitlistEvent->getTimestampPacketNodes()) {
return true;
}
}
}
return false;
}
void CommandQueue::storeProperties(const cl_queue_properties *properties) {
if (properties) {
for (size_t i = 0; properties[i] != 0; i += 2) {
propertiesVector.push_back(properties[i]);
propertiesVector.push_back(properties[i + 1]);
}
propertiesVector.push_back(0);
}
}
void CommandQueue::aubCaptureHook(bool &blocking, bool &clearAllDependencies, const MultiDispatchInfo &multiDispatchInfo) {
if (DebugManager.flags.AUBDumpSubCaptureMode.get()) {
auto status = getGpgpuCommandStreamReceiver().checkAndActivateAubSubCapture(multiDispatchInfo);
if (!status.isActive) {
// make each enqueue blocking when subcapture is not active to split batch buffer
blocking = true;
} else if (!status.wasActiveInPreviousEnqueue) {
// omit timestamp packet dependencies dependencies upon subcapture activation
clearAllDependencies = true;
}
}
if (getGpgpuCommandStreamReceiver().getType() > CommandStreamReceiverType::CSR_HW) {
for (auto &dispatchInfo : multiDispatchInfo) {
auto kernelName = dispatchInfo.getKernel()->getKernelInfo().kernelDescriptor.kernelMetadata.kernelName;
getGpgpuCommandStreamReceiver().addAubComment(kernelName.c_str());
}
}
}
void CommandQueue::waitUntilComplete(bool blockedQueue, PrintfHandler *printfHandler) {
if (blockedQueue) {
while (isQueueBlocked()) {
}
}
waitUntilComplete(taskCount, bcsTaskCount, flushStamp->peekStamp(), false);
if (printfHandler) {
printfHandler->printEnqueueOutput();
}
}
} // namespace NEO
|