File: command_queue.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (729 lines) | stat: -rw-r--r-- 31,158 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
/*
 * Copyright (C) 2018-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "opencl/source/command_queue/command_queue.h"

#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/array_count.h"
#include "shared/source/helpers/engine_node_helper.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/os_interface/os_context.h"
#include "shared/source/utilities/api_intercept.h"
#include "shared/source/utilities/tag_allocator.h"

#include "opencl/source/built_ins/builtins_dispatch_builder.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/context/context.h"
#include "opencl/source/device_queue/device_queue.h"
#include "opencl/source/event/event_builder.h"
#include "opencl/source/event/user_event.h"
#include "opencl/source/gtpin/gtpin_notify.h"
#include "opencl/source/helpers/convert_color.h"
#include "opencl/source/helpers/hardware_commands_helper.h"
#include "opencl/source/helpers/mipmap.h"
#include "opencl/source/helpers/queue_helpers.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/source/mem_obj/image.h"
#include "opencl/source/program/printf_handler.h"

#include "CL/cl_ext.h"

#include <map>

namespace NEO {

// Global table of create functions
CommandQueueCreateFunc commandQueueFactory[IGFX_MAX_CORE] = {};

CommandQueue *CommandQueue::create(Context *context,
                                   ClDevice *device,
                                   const cl_queue_properties *properties,
                                   bool internalUsage,
                                   cl_int &retVal) {
    retVal = CL_SUCCESS;

    auto funcCreate = commandQueueFactory[device->getRenderCoreFamily()];
    DEBUG_BREAK_IF(nullptr == funcCreate);

    return funcCreate(context, device, properties, internalUsage);
}

CommandQueue::CommandQueue(Context *context, ClDevice *device, const cl_queue_properties *properties)
    : context(context), device(device) {
    if (context) {
        context->incRefInternal();
    }

    commandQueueProperties = getCmdQueueProperties<cl_command_queue_properties>(properties);
    flushStamp.reset(new FlushStampTracker(true));

    if (device) {
        auto hwInfo = device->getHardwareInfo();
        gpgpuEngine = &device->getDefaultEngine();
        if (hwInfo.capabilityTable.blitterOperationsSupported || gpgpuEngine->commandStreamReceiver->peekTimestampPacketWriteEnabled()) {
            timestampPacketContainer = std::make_unique<TimestampPacketContainer>();
        }
        if (hwInfo.capabilityTable.blitterOperationsSupported) {
            auto &selectorCopyEngine = device->getDeviceById(0)->getSelectorCopyEngine();
            bcsEngine = &device->getDeviceById(0)->getEngine(EngineHelpers::getBcsEngineType(hwInfo, selectorCopyEngine), false, false);
        }
    }

    storeProperties(properties);
    processProperties(properties);
}

CommandQueue::~CommandQueue() {
    if (virtualEvent) {
        UNRECOVERABLE_IF(this->virtualEvent->getCommandQueue() != this && this->virtualEvent->getCommandQueue() != nullptr);
        virtualEvent->decRefInternal();
    }

    if (device) {
        auto storageForAllocation = gpgpuEngine->commandStreamReceiver->getInternalAllocationStorage();

        if (commandStream) {
            storageForAllocation->storeAllocation(std::unique_ptr<GraphicsAllocation>(commandStream->getGraphicsAllocation()), REUSABLE_ALLOCATION);
        }
        delete commandStream;

        if (this->perfCountersEnabled) {
            device->getPerformanceCounters()->shutdown();
        }
    }

    timestampPacketContainer.reset();
    //for normal queue, decrement ref count on context
    //special queue is owned by context so ref count doesn't have to be decremented
    if (context && !isSpecialCommandQueue) {
        context->decRefInternal();
    }
}

CommandStreamReceiver &CommandQueue::getGpgpuCommandStreamReceiver() const {
    return *gpgpuEngine->commandStreamReceiver;
}

CommandStreamReceiver *CommandQueue::getBcsCommandStreamReceiver() const {
    if (bcsEngine) {
        return bcsEngine->commandStreamReceiver;
    }
    return nullptr;
}

CommandStreamReceiver &CommandQueue::getCommandStreamReceiverByCommandType(cl_command_type cmdType) const {
    if (blitEnqueueAllowed(cmdType)) {
        auto csr = getBcsCommandStreamReceiver();
        UNRECOVERABLE_IF(!csr);
        return *csr;
    }
    return getGpgpuCommandStreamReceiver();
}

Device &CommandQueue::getDevice() const noexcept {
    return device->getDevice();
}

uint32_t CommandQueue::getHwTag() const {
    uint32_t tag = *getHwTagAddress();
    return tag;
}

volatile uint32_t *CommandQueue::getHwTagAddress() const {
    return getGpgpuCommandStreamReceiver().getTagAddress();
}

bool CommandQueue::isCompleted(uint32_t gpgpuTaskCount, uint32_t bcsTaskCount) const {
    uint32_t gpgpuHwTag = getHwTag();
    DEBUG_BREAK_IF(gpgpuHwTag == CompletionStamp::notReady);

    if (gpgpuHwTag >= gpgpuTaskCount) {
        if (auto bcsCsr = getBcsCommandStreamReceiver()) {
            return (*bcsCsr->getTagAddress()) >= bcsTaskCount;
        }

        return true;
    }

    return false;
}

void CommandQueue::waitUntilComplete(uint32_t gpgpuTaskCountToWait, uint32_t bcsTaskCountToWait, FlushStamp flushStampToWait, bool useQuickKmdSleep) {
    WAIT_ENTER()

    DBG_LOG(LogTaskCounts, __FUNCTION__, "Waiting for taskCount:", gpgpuTaskCountToWait);
    DBG_LOG(LogTaskCounts, __FUNCTION__, "Line: ", __LINE__, "Current taskCount:", getHwTag());

    bool forcePowerSavingMode = this->throttle == QueueThrottle::LOW;

    getGpgpuCommandStreamReceiver().waitForTaskCountWithKmdNotifyFallback(gpgpuTaskCountToWait, flushStampToWait,
                                                                          useQuickKmdSleep, forcePowerSavingMode);
    DEBUG_BREAK_IF(getHwTag() < gpgpuTaskCountToWait);

    if (gtpinIsGTPinInitialized()) {
        gtpinNotifyTaskCompletion(gpgpuTaskCountToWait);
    }

    if (auto bcsCsr = getBcsCommandStreamReceiver()) {
        bcsCsr->waitForTaskCountWithKmdNotifyFallback(bcsTaskCountToWait, 0, false, false);
        bcsCsr->waitForTaskCountAndCleanTemporaryAllocationList(bcsTaskCountToWait);
    }

    getGpgpuCommandStreamReceiver().waitForTaskCountAndCleanTemporaryAllocationList(gpgpuTaskCountToWait);

    WAIT_LEAVE()
}

bool CommandQueue::isQueueBlocked() {
    TakeOwnershipWrapper<CommandQueue> takeOwnershipWrapper(*this);
    //check if we have user event and if so, if it is in blocked state.
    if (this->virtualEvent) {
        auto executionStatus = this->virtualEvent->peekExecutionStatus();
        if (executionStatus <= CL_SUBMITTED) {
            UNRECOVERABLE_IF(this->virtualEvent == nullptr);

            if (this->virtualEvent->isStatusCompletedByTermination(executionStatus) == false) {
                taskCount = this->virtualEvent->peekTaskCount();
                flushStamp->setStamp(this->virtualEvent->flushStamp->peekStamp());
                taskLevel = this->virtualEvent->taskLevel;
                // If this isn't an OOQ, update the taskLevel for the queue
                if (!isOOQEnabled()) {
                    taskLevel++;
                }
            } else {
                //at this point we may reset queue TaskCount, since all command previous to this were aborted
                taskCount = 0;
                flushStamp->setStamp(0);
                taskLevel = getGpgpuCommandStreamReceiver().peekTaskLevel();
            }

            FileLoggerInstance().log(DebugManager.flags.EventsDebugEnable.get(), "isQueueBlocked taskLevel change from", taskLevel, "to new from virtualEvent", this->virtualEvent, "new tasklevel", this->virtualEvent->taskLevel.load());

            //close the access to virtual event, driver added only 1 ref count.
            this->virtualEvent->decRefInternal();
            this->virtualEvent = nullptr;
            return false;
        }
        return true;
    }
    return false;
}

cl_int CommandQueue::getCommandQueueInfo(cl_command_queue_info paramName,
                                         size_t paramValueSize,
                                         void *paramValue,
                                         size_t *paramValueSizeRet) {
    return getQueueInfo<CommandQueue>(this, paramName, paramValueSize, paramValue, paramValueSizeRet);
}

uint32_t CommandQueue::getTaskLevelFromWaitList(uint32_t taskLevel,
                                                cl_uint numEventsInWaitList,
                                                const cl_event *eventWaitList) {
    for (auto iEvent = 0u; iEvent < numEventsInWaitList; ++iEvent) {
        auto pEvent = (Event *)(eventWaitList[iEvent]);
        uint32_t eventTaskLevel = pEvent->taskLevel;
        taskLevel = std::max(taskLevel, eventTaskLevel);
    }
    return taskLevel;
}

LinearStream &CommandQueue::getCS(size_t minRequiredSize) {
    DEBUG_BREAK_IF(nullptr == device);

    if (!commandStream) {
        commandStream = new LinearStream(nullptr);
    }

    minRequiredSize += CSRequirements::minCommandQueueCommandStreamSize;
    constexpr static auto additionalAllocationSize = CSRequirements::minCommandQueueCommandStreamSize + CSRequirements::csOverfetchSize;
    getGpgpuCommandStreamReceiver().ensureCommandBufferAllocation(*commandStream, minRequiredSize, additionalAllocationSize);
    return *commandStream;
}

cl_int CommandQueue::enqueueAcquireSharedObjects(cl_uint numObjects, const cl_mem *memObjects, cl_uint numEventsInWaitList, const cl_event *eventWaitList, cl_event *oclEvent, cl_uint cmdType) {
    if ((memObjects == nullptr && numObjects != 0) || (memObjects != nullptr && numObjects == 0)) {
        return CL_INVALID_VALUE;
    }

    for (unsigned int object = 0; object < numObjects; object++) {
        auto memObject = castToObject<MemObj>(memObjects[object]);
        if (memObject == nullptr || memObject->peekSharingHandler() == nullptr) {
            return CL_INVALID_MEM_OBJECT;
        }

        int result = memObject->peekSharingHandler()->acquire(memObject, getDevice().getRootDeviceIndex());
        if (result != CL_SUCCESS) {
            return result;
        }
        memObject->acquireCount++;
    }
    auto status = enqueueMarkerWithWaitList(
        numEventsInWaitList,
        eventWaitList,
        oclEvent);

    if (oclEvent) {
        castToObjectOrAbort<Event>(*oclEvent)->setCmdType(cmdType);
    }

    return status;
}

cl_int CommandQueue::enqueueReleaseSharedObjects(cl_uint numObjects, const cl_mem *memObjects, cl_uint numEventsInWaitList, const cl_event *eventWaitList, cl_event *oclEvent, cl_uint cmdType) {
    if ((memObjects == nullptr && numObjects != 0) || (memObjects != nullptr && numObjects == 0)) {
        return CL_INVALID_VALUE;
    }

    for (unsigned int object = 0; object < numObjects; object++) {
        auto memObject = castToObject<MemObj>(memObjects[object]);
        if (memObject == nullptr || memObject->peekSharingHandler() == nullptr) {
            return CL_INVALID_MEM_OBJECT;
        }

        memObject->peekSharingHandler()->release(memObject, getDevice().getRootDeviceIndex());
        DEBUG_BREAK_IF(memObject->acquireCount <= 0);
        memObject->acquireCount--;
    }
    auto status = enqueueMarkerWithWaitList(
        numEventsInWaitList,
        eventWaitList,
        oclEvent);

    if (oclEvent) {
        castToObjectOrAbort<Event>(*oclEvent)->setCmdType(cmdType);
    }
    return status;
}

void CommandQueue::updateFromCompletionStamp(const CompletionStamp &completionStamp, Event *outEvent) {
    DEBUG_BREAK_IF(this->taskLevel > completionStamp.taskLevel);
    DEBUG_BREAK_IF(this->taskCount > completionStamp.taskCount);
    if (completionStamp.taskCount != CompletionStamp::notReady) {
        taskCount = completionStamp.taskCount;
    }
    flushStamp->setStamp(completionStamp.flushStamp);
    this->taskLevel = completionStamp.taskLevel;

    if (outEvent) {
        outEvent->updateCompletionStamp(completionStamp.taskCount, bcsTaskCount, completionStamp.taskLevel, completionStamp.flushStamp);
        FileLoggerInstance().log(DebugManager.flags.EventsDebugEnable.get(), "updateCompletionStamp Event", outEvent, "taskLevel", outEvent->taskLevel.load());
    }
}

bool CommandQueue::setPerfCountersEnabled() {
    DEBUG_BREAK_IF(device == nullptr);

    auto perfCounters = device->getPerformanceCounters();
    bool isCcsEngine = EngineHelpers::isCcs(getGpgpuEngine().osContext->getEngineType());

    perfCountersEnabled = perfCounters->enable(isCcsEngine);

    if (!perfCountersEnabled) {
        perfCounters->shutdown();
    }

    return perfCountersEnabled;
}

PerformanceCounters *CommandQueue::getPerfCounters() {
    return device->getPerformanceCounters();
}

cl_int CommandQueue::enqueueWriteMemObjForUnmap(MemObj *memObj, void *mappedPtr, EventsRequest &eventsRequest) {
    cl_int retVal = CL_SUCCESS;

    MapInfo unmapInfo;
    if (!memObj->findMappedPtr(mappedPtr, unmapInfo)) {
        return CL_INVALID_VALUE;
    }

    if (!unmapInfo.readOnly) {
        memObj->getMapAllocation(getDevice().getRootDeviceIndex())->setAubWritable(true, GraphicsAllocation::defaultBank);
        memObj->getMapAllocation(getDevice().getRootDeviceIndex())->setTbxWritable(true, GraphicsAllocation::defaultBank);

        if (memObj->peekClMemObjType() == CL_MEM_OBJECT_BUFFER) {
            auto buffer = castToObject<Buffer>(memObj);

            retVal = enqueueWriteBuffer(buffer, CL_FALSE, unmapInfo.offset[0], unmapInfo.size[0], mappedPtr, memObj->getMapAllocation(getDevice().getRootDeviceIndex()),
                                        eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, eventsRequest.outEvent);
        } else {
            auto image = castToObjectOrAbort<Image>(memObj);
            size_t writeOrigin[4] = {unmapInfo.offset[0], unmapInfo.offset[1], unmapInfo.offset[2], 0};
            auto mipIdx = getMipLevelOriginIdx(image->peekClMemObjType());
            UNRECOVERABLE_IF(mipIdx >= 4);
            writeOrigin[mipIdx] = unmapInfo.mipLevel;
            retVal = enqueueWriteImage(image, CL_FALSE, writeOrigin, &unmapInfo.size[0],
                                       image->getHostPtrRowPitch(), image->getHostPtrSlicePitch(), mappedPtr, memObj->getMapAllocation(getDevice().getRootDeviceIndex()),
                                       eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, eventsRequest.outEvent);
        }
    } else {
        retVal = enqueueMarkerWithWaitList(eventsRequest.numEventsInWaitList, eventsRequest.eventWaitList, eventsRequest.outEvent);
    }

    if (retVal == CL_SUCCESS) {
        memObj->removeMappedPtr(mappedPtr);
        if (eventsRequest.outEvent) {
            auto event = castToObject<Event>(*eventsRequest.outEvent);
            event->setCmdType(CL_COMMAND_UNMAP_MEM_OBJECT);
        }
    }
    return retVal;
}

void *CommandQueue::enqueueReadMemObjForMap(TransferProperties &transferProperties, EventsRequest &eventsRequest, cl_int &errcodeRet) {
    void *basePtr = transferProperties.memObj->getBasePtrForMap(getDevice().getRootDeviceIndex());
    size_t mapPtrOffset = transferProperties.memObj->calculateOffsetForMapping(transferProperties.offset) + transferProperties.mipPtrOffset;
    if (transferProperties.memObj->peekClMemObjType() == CL_MEM_OBJECT_BUFFER) {
        mapPtrOffset += transferProperties.memObj->getOffset();
    }
    void *returnPtr = ptrOffset(basePtr, mapPtrOffset);

    if (!transferProperties.memObj->addMappedPtr(returnPtr, transferProperties.memObj->calculateMappedPtrLength(transferProperties.size),
                                                 transferProperties.mapFlags, transferProperties.size, transferProperties.offset, transferProperties.mipLevel)) {
        errcodeRet = CL_INVALID_OPERATION;
        return nullptr;
    }

    if (transferProperties.memObj->peekClMemObjType() == CL_MEM_OBJECT_BUFFER) {
        auto buffer = castToObject<Buffer>(transferProperties.memObj);
        errcodeRet = enqueueReadBuffer(buffer, transferProperties.blocking, transferProperties.offset[0], transferProperties.size[0],
                                       returnPtr, transferProperties.memObj->getMapAllocation(getDevice().getRootDeviceIndex()), eventsRequest.numEventsInWaitList,
                                       eventsRequest.eventWaitList, eventsRequest.outEvent);
    } else {
        auto image = castToObjectOrAbort<Image>(transferProperties.memObj);
        size_t readOrigin[4] = {transferProperties.offset[0], transferProperties.offset[1], transferProperties.offset[2], 0};
        auto mipIdx = getMipLevelOriginIdx(image->peekClMemObjType());
        UNRECOVERABLE_IF(mipIdx >= 4);
        readOrigin[mipIdx] = transferProperties.mipLevel;
        errcodeRet = enqueueReadImage(image, transferProperties.blocking, readOrigin, &transferProperties.size[0],
                                      image->getHostPtrRowPitch(), image->getHostPtrSlicePitch(),
                                      returnPtr, transferProperties.memObj->getMapAllocation(getDevice().getRootDeviceIndex()), eventsRequest.numEventsInWaitList,
                                      eventsRequest.eventWaitList, eventsRequest.outEvent);
    }

    if (errcodeRet != CL_SUCCESS) {
        transferProperties.memObj->removeMappedPtr(returnPtr);
        return nullptr;
    }
    if (eventsRequest.outEvent) {
        auto event = castToObject<Event>(*eventsRequest.outEvent);
        event->setCmdType(transferProperties.cmdType);
    }
    return returnPtr;
}

void *CommandQueue::enqueueMapMemObject(TransferProperties &transferProperties, EventsRequest &eventsRequest, cl_int &errcodeRet) {
    if (transferProperties.memObj->mappingOnCpuAllowed()) {
        return cpuDataTransferHandler(transferProperties, eventsRequest, errcodeRet);
    } else {
        return enqueueReadMemObjForMap(transferProperties, eventsRequest, errcodeRet);
    }
}

cl_int CommandQueue::enqueueUnmapMemObject(TransferProperties &transferProperties, EventsRequest &eventsRequest) {
    cl_int retVal = CL_SUCCESS;
    if (transferProperties.memObj->mappingOnCpuAllowed()) {
        cpuDataTransferHandler(transferProperties, eventsRequest, retVal);
    } else {
        retVal = enqueueWriteMemObjForUnmap(transferProperties.memObj, transferProperties.ptr, eventsRequest);
    }
    return retVal;
}

void *CommandQueue::enqueueMapBuffer(Buffer *buffer, cl_bool blockingMap,
                                     cl_map_flags mapFlags, size_t offset,
                                     size_t size, cl_uint numEventsInWaitList,
                                     const cl_event *eventWaitList, cl_event *event,
                                     cl_int &errcodeRet) {
    TransferProperties transferProperties(buffer, CL_COMMAND_MAP_BUFFER, mapFlags, blockingMap != CL_FALSE, &offset, &size, nullptr, false, getDevice().getRootDeviceIndex());
    EventsRequest eventsRequest(numEventsInWaitList, eventWaitList, event);

    return enqueueMapMemObject(transferProperties, eventsRequest, errcodeRet);
}

void *CommandQueue::enqueueMapImage(Image *image, cl_bool blockingMap,
                                    cl_map_flags mapFlags, const size_t *origin,
                                    const size_t *region, size_t *imageRowPitch,
                                    size_t *imageSlicePitch,
                                    cl_uint numEventsInWaitList,
                                    const cl_event *eventWaitList, cl_event *event,
                                    cl_int &errcodeRet) {
    TransferProperties transferProperties(image, CL_COMMAND_MAP_IMAGE, mapFlags, blockingMap != CL_FALSE,
                                          const_cast<size_t *>(origin), const_cast<size_t *>(region), nullptr, false, getDevice().getRootDeviceIndex());
    EventsRequest eventsRequest(numEventsInWaitList, eventWaitList, event);

    if (image->isMemObjZeroCopy() && image->mappingOnCpuAllowed()) {
        GetInfoHelper::set(imageSlicePitch, image->getImageDesc().image_slice_pitch);
        if (image->getImageDesc().image_type == CL_MEM_OBJECT_IMAGE1D_ARRAY) {
            // There are differences in qPitch programming between Gen8 vs Gen9+ devices.
            // For Gen8 qPitch is distance in rows while Gen9+ it is in pixels.
            // Minimum value of qPitch is 4 and this causes slicePitch = 4*rowPitch on Gen8.
            // To allow zero-copy we have to tell what is correct value rowPitch which should equal to slicePitch.
            GetInfoHelper::set(imageRowPitch, image->getImageDesc().image_slice_pitch);
        } else {
            GetInfoHelper::set(imageRowPitch, image->getImageDesc().image_row_pitch);
        }
    } else {
        GetInfoHelper::set(imageSlicePitch, image->getHostPtrSlicePitch());
        GetInfoHelper::set(imageRowPitch, image->getHostPtrRowPitch());
    }
    if (Image::hasSlices(image->peekClMemObjType()) == false) {
        GetInfoHelper::set(imageSlicePitch, static_cast<size_t>(0));
    }
    return enqueueMapMemObject(transferProperties, eventsRequest, errcodeRet);
}

cl_int CommandQueue::enqueueUnmapMemObject(MemObj *memObj, void *mappedPtr, cl_uint numEventsInWaitList, const cl_event *eventWaitList, cl_event *event) {
    TransferProperties transferProperties(memObj, CL_COMMAND_UNMAP_MEM_OBJECT, 0, false, nullptr, nullptr, mappedPtr, false, getDevice().getRootDeviceIndex());
    EventsRequest eventsRequest(numEventsInWaitList, eventWaitList, event);

    return enqueueUnmapMemObject(transferProperties, eventsRequest);
}

void CommandQueue::enqueueBlockedMapUnmapOperation(const cl_event *eventWaitList,
                                                   size_t numEventsInWaitlist,
                                                   MapOperationType opType,
                                                   MemObj *memObj,
                                                   MemObjSizeArray &copySize,
                                                   MemObjOffsetArray &copyOffset,
                                                   bool readOnly,
                                                   EventBuilder &externalEventBuilder) {
    EventBuilder internalEventBuilder;
    EventBuilder *eventBuilder;
    // check if event will be exposed externally
    if (externalEventBuilder.getEvent()) {
        externalEventBuilder.getEvent()->incRefInternal();
        eventBuilder = &externalEventBuilder;
    } else {
        // it will be an internal event
        internalEventBuilder.create<VirtualEvent>(this, context);
        eventBuilder = &internalEventBuilder;
    }

    //store task data in event
    auto cmd = std::unique_ptr<Command>(new CommandMapUnmap(opType, *memObj, copySize, copyOffset, readOnly, *this));
    eventBuilder->getEvent()->setCommand(std::move(cmd));

    //bind output event with input events
    eventBuilder->addParentEvents(ArrayRef<const cl_event>(eventWaitList, numEventsInWaitlist));
    eventBuilder->addParentEvent(this->virtualEvent);
    eventBuilder->finalize();

    if (this->virtualEvent) {
        this->virtualEvent->decRefInternal();
    }
    this->virtualEvent = eventBuilder->getEvent();
}

bool CommandQueue::setupDebugSurface(Kernel *kernel) {
    auto debugSurface = getGpgpuCommandStreamReceiver().getDebugSurfaceAllocation();

    DEBUG_BREAK_IF(!kernel->requiresSshForBuffers());

    auto surfaceState = ptrOffset(reinterpret_cast<uintptr_t *>(kernel->getSurfaceStateHeap()),
                                  kernel->getKernelInfo().patchInfo.pAllocateSystemThreadSurface->Offset);
    void *addressToPatch = reinterpret_cast<void *>(debugSurface->getGpuAddress());
    size_t sizeToPatch = debugSurface->getUnderlyingBufferSize();
    Buffer::setSurfaceState(&device->getDevice(), surfaceState, sizeToPatch, addressToPatch, 0, debugSurface, 0, 0);
    return true;
}

IndirectHeap &CommandQueue::getIndirectHeap(IndirectHeap::Type heapType, size_t minRequiredSize) {
    return getGpgpuCommandStreamReceiver().getIndirectHeap(heapType, minRequiredSize);
}

void CommandQueue::allocateHeapMemory(IndirectHeap::Type heapType, size_t minRequiredSize, IndirectHeap *&indirectHeap) {
    getGpgpuCommandStreamReceiver().allocateHeapMemory(heapType, minRequiredSize, indirectHeap);
}

void CommandQueue::releaseIndirectHeap(IndirectHeap::Type heapType) {
    getGpgpuCommandStreamReceiver().releaseIndirectHeap(heapType);
}

void CommandQueue::obtainNewTimestampPacketNodes(size_t numberOfNodes, TimestampPacketContainer &previousNodes, bool clearAllDependencies, bool blitEnqueue) {
    auto allocator = blitEnqueue ? getBcsCommandStreamReceiver()->getTimestampPacketAllocator()
                                 : getGpgpuCommandStreamReceiver().getTimestampPacketAllocator();

    previousNodes.swapNodes(*timestampPacketContainer);

    if ((previousNodes.peekNodes().size() > 0) && (previousNodes.peekNodes()[0]->getAllocator() != allocator)) {
        clearAllDependencies = false;
    }

    previousNodes.resolveDependencies(clearAllDependencies);

    DEBUG_BREAK_IF(timestampPacketContainer->peekNodes().size() > 0);

    for (size_t i = 0; i < numberOfNodes; i++) {
        timestampPacketContainer->add(allocator->getTag());
    }
}

size_t CommandQueue::estimateTimestampPacketNodesCount(const MultiDispatchInfo &dispatchInfo) const {
    size_t nodesCount = dispatchInfo.size();
    auto mainKernel = dispatchInfo.peekMainKernel();
    if (obtainTimestampPacketForCacheFlush(mainKernel->requiresCacheFlushCommand(*this))) {
        nodesCount++;
    }
    return nodesCount;
}

bool CommandQueue::bufferCpuCopyAllowed(Buffer *buffer, cl_command_type commandType, cl_bool blocking, size_t size, void *ptr,
                                        cl_uint numEventsInWaitList, const cl_event *eventWaitList) {

    auto debugVariableSet = false;
    // Requested by debug variable or allowed by Buffer
    if (CL_COMMAND_READ_BUFFER == commandType && DebugManager.flags.DoCpuCopyOnReadBuffer.get() != -1) {
        if (DebugManager.flags.DoCpuCopyOnReadBuffer.get() == 0) {
            return false;
        }
        debugVariableSet = true;
    }
    if (CL_COMMAND_WRITE_BUFFER == commandType && DebugManager.flags.DoCpuCopyOnWriteBuffer.get() != -1) {
        if (DebugManager.flags.DoCpuCopyOnWriteBuffer.get() == 0) {
            return false;
        }
        debugVariableSet = true;
    }

    //if we are blocked by user events, we can't service the call on CPU
    if (Event::checkUserEventDependencies(numEventsInWaitList, eventWaitList)) {
        return false;
    }

    //check if buffer is compatible
    if (!buffer->isReadWriteOnCpuAllowed(device->getRootDeviceIndex())) {
        return false;
    }

    if (buffer->getMemoryManager() && buffer->getMemoryManager()->isCpuCopyRequired(ptr)) {
        return true;
    }

    if (debugVariableSet) {
        return true;
    }

    //non blocking transfers are not expected to be serviced by CPU
    //we do not want to artifically stall the pipeline to allow CPU access
    if (blocking == CL_FALSE) {
        return false;
    }

    //check if it is beneficial to do transfer on CPU
    if (!buffer->isReadWriteOnCpuPreferred(ptr, size, getDevice())) {
        return false;
    }

    //make sure that event wait list is empty
    if (numEventsInWaitList == 0) {
        return true;
    }

    return false;
}

bool CommandQueue::queueDependenciesClearRequired() const {
    return isOOQEnabled() || DebugManager.flags.OmitTimestampPacketDependencies.get();
}

bool CommandQueue::blitEnqueueAllowed(cl_command_type cmdType) const {

    auto blitAllowed = device->getHardwareInfo().capabilityTable.blitterOperationsSupported || this->isCopyOnly;
    if (DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.get() != -1) {

        blitAllowed &= static_cast<bool>(DebugManager.flags.EnableBlitterOperationsForReadWriteBuffers.get());
    }

    switch (cmdType) {
    case CL_COMMAND_READ_BUFFER:
    case CL_COMMAND_WRITE_BUFFER:
    case CL_COMMAND_COPY_BUFFER:
    case CL_COMMAND_READ_BUFFER_RECT:
    case CL_COMMAND_WRITE_BUFFER_RECT:
    case CL_COMMAND_COPY_BUFFER_RECT:
    case CL_COMMAND_SVM_MEMCPY:
    case CL_COMMAND_READ_IMAGE:
    case CL_COMMAND_WRITE_IMAGE:
        return blitAllowed;
    default:
        return false;
    }
}

bool CommandQueue::isBlockedCommandStreamRequired(uint32_t commandType, const EventsRequest &eventsRequest, bool blockedQueue) const {
    if (!blockedQueue) {
        return false;
    }

    if (isCacheFlushCommand(commandType) || !isCommandWithoutKernel(commandType)) {
        return true;
    }

    if ((CL_COMMAND_BARRIER == commandType || CL_COMMAND_MARKER == commandType) &&
        getGpgpuCommandStreamReceiver().peekTimestampPacketWriteEnabled()) {

        for (size_t i = 0; i < eventsRequest.numEventsInWaitList; i++) {
            auto waitlistEvent = castToObjectOrAbort<Event>(eventsRequest.eventWaitList[i]);
            if (waitlistEvent->getTimestampPacketNodes()) {
                return true;
            }
        }
    }

    return false;
}

void CommandQueue::storeProperties(const cl_queue_properties *properties) {
    if (properties) {
        for (size_t i = 0; properties[i] != 0; i += 2) {
            propertiesVector.push_back(properties[i]);
            propertiesVector.push_back(properties[i + 1]);
        }
        propertiesVector.push_back(0);
    }
}

void CommandQueue::aubCaptureHook(bool &blocking, bool &clearAllDependencies, const MultiDispatchInfo &multiDispatchInfo) {
    if (DebugManager.flags.AUBDumpSubCaptureMode.get()) {
        auto status = getGpgpuCommandStreamReceiver().checkAndActivateAubSubCapture(multiDispatchInfo);
        if (!status.isActive) {
            // make each enqueue blocking when subcapture is not active to split batch buffer
            blocking = true;
        } else if (!status.wasActiveInPreviousEnqueue) {
            // omit timestamp packet dependencies dependencies upon subcapture activation
            clearAllDependencies = true;
        }
    }

    if (getGpgpuCommandStreamReceiver().getType() > CommandStreamReceiverType::CSR_HW) {
        for (auto &dispatchInfo : multiDispatchInfo) {
            auto kernelName = dispatchInfo.getKernel()->getKernelInfo().kernelDescriptor.kernelMetadata.kernelName;
            getGpgpuCommandStreamReceiver().addAubComment(kernelName.c_str());
        }
    }
}

void CommandQueue::waitUntilComplete(bool blockedQueue, PrintfHandler *printfHandler) {
    if (blockedQueue) {
        while (isQueueBlocked()) {
        }
    }

    waitUntilComplete(taskCount, bcsTaskCount, flushStamp->peekStamp(), false);

    if (printfHandler) {
        printfHandler->printEnqueueOutput();
    }
}

} // namespace NEO