File: event.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (765 lines) | stat: -rw-r--r-- 27,815 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "opencl/source/event/event.h"

#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/helpers/timestamp_packet.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/utilities/range.h"
#include "shared/source/utilities/stackvec.h"
#include "shared/source/utilities/tag_allocator.h"

#include "opencl/extensions/public/cl_ext_private.h"
#include "opencl/source/api/cl_types.h"
#include "opencl/source/command_queue/command_queue.h"
#include "opencl/source/context/context.h"
#include "opencl/source/event/async_events_handler.h"
#include "opencl/source/event/event_tracker.h"
#include "opencl/source/helpers/get_info_status_mapper.h"
#include "opencl/source/helpers/hardware_commands_helper.h"
#include "opencl/source/mem_obj/mem_obj.h"

#define OCLRT_NUM_TIMESTAMP_BITS (32)

namespace NEO {

Event::Event(
    Context *ctx,
    CommandQueue *cmdQueue,
    cl_command_type cmdType,
    uint32_t taskLevel,
    uint32_t taskCount)
    : taskLevel(taskLevel),
      currentCmdQVirtualEvent(false),
      cmdToSubmit(nullptr),
      submittedCmd(nullptr),
      ctx(ctx),
      cmdQueue(cmdQueue),
      cmdType(cmdType),
      dataCalculated(false),
      taskCount(taskCount) {
    if (NEO::DebugManager.flags.EventsTrackerEnable.get()) {
        EventsTracker::getEventsTracker().notifyCreation(this);
    }
    parentCount = 0;
    executionStatus = CL_QUEUED;
    flushStamp.reset(new FlushStampTracker(true));

    DBG_LOG(EventsDebugEnable, "Event()", this);

    // Event can live longer than command queue that created it,
    // hence command queue refCount must be incremented
    // non-null command queue is only passed when Base Event object is created
    // any other Event types must increment refcount when setting command queue
    if (cmdQueue != nullptr) {
        cmdQueue->incRefInternal();
    }

    if ((this->ctx == nullptr) && (cmdQueue != nullptr)) {
        this->ctx = &cmdQueue->getContext();
        if (cmdQueue->getTimestampPacketContainer()) {
            timestampPacketContainer = std::make_unique<TimestampPacketContainer>();
        }
    }

    if (this->ctx != nullptr) {
        this->ctx->incRefInternal();
    }

    queueTimeStamp = {0, 0};
    submitTimeStamp = {0, 0};
    startTimeStamp = 0;
    endTimeStamp = 0;
    completeTimeStamp = 0;

    profilingEnabled = !isUserEvent() &&
                       (cmdQueue ? cmdQueue->getCommandQueueProperties() & CL_QUEUE_PROFILING_ENABLE : false);
    profilingCpuPath = ((cmdType == CL_COMMAND_MAP_BUFFER) || (cmdType == CL_COMMAND_MAP_IMAGE)) && profilingEnabled;

    perfCountersEnabled = cmdQueue ? cmdQueue->isPerfCountersEnabled() : false;
}

Event::Event(
    CommandQueue *cmdQueue,
    cl_command_type cmdType,
    uint32_t taskLevel,
    uint32_t taskCount)
    : Event(nullptr, cmdQueue, cmdType, taskLevel, taskCount) {
}

Event::~Event() {
    if (NEO::DebugManager.flags.EventsTrackerEnable.get()) {
        EventsTracker::getEventsTracker().notifyDestruction(this);
    }

    DBG_LOG(EventsDebugEnable, "~Event()", this);
    //no commands should be registred
    DEBUG_BREAK_IF(this->cmdToSubmit.load());

    submitCommand(true);

    int32_t lastStatus = executionStatus;
    if (isStatusCompleted(lastStatus) == false) {
        transitionExecutionStatus(-1);
        DEBUG_BREAK_IF(peekHasCallbacks() || peekHasChildEvents());
    }

    // Note from OCL spec:
    //    "All callbacks registered for an event object must be called.
    //     All enqueued callbacks shall be called before the event object is destroyed."
    if (peekHasCallbacks()) {
        executeCallbacks(lastStatus);
    }

    {
        // clean-up submitted command if needed
        std::unique_ptr<Command> submittedCommand(submittedCmd.exchange(nullptr));
    }

    if (cmdQueue != nullptr) {
        if (timeStampNode != nullptr) {
            timeStampNode->returnTag();
        }
        if (perfCounterNode != nullptr) {
            cmdQueue->getPerfCounters()->deleteQuery(perfCounterNode->tagForCpuAccess->query.handle);
            perfCounterNode->tagForCpuAccess->query.handle = {};
            perfCounterNode->returnTag();
        }
        cmdQueue->decRefInternal();
    }

    if (ctx != nullptr) {
        ctx->decRefInternal();
    }

    // in case event did not unblock child events before
    unblockEventsBlockedByThis(executionStatus);
}

cl_int Event::getEventProfilingInfo(cl_profiling_info paramName,
                                    size_t paramValueSize,
                                    void *paramValue,
                                    size_t *paramValueSizeRet) {
    cl_int retVal;
    const void *src = nullptr;
    size_t srcSize = GetInfo::invalidSourceSize;

    // CL_PROFILING_INFO_NOT_AVAILABLE if event refers to the clEnqueueSVMFree command
    if (isUserEvent() != CL_FALSE ||         // or is a user event object.
        !updateStatusAndCheckCompletion() || //if the execution status of the command identified by event is not CL_COMPLETE
        !profilingEnabled)                   // the CL_QUEUE_PROFILING_ENABLE flag is not set for the command-queue,
    {
        return CL_PROFILING_INFO_NOT_AVAILABLE;
    }

    // if paramValue is NULL, it is ignored
    switch (paramName) {
    case CL_PROFILING_COMMAND_QUEUED:
        src = &queueTimeStamp.CPUTimeinNS;
        if (DebugManager.flags.ReturnRawGpuTimestamps.get()) {
            src = &queueTimeStamp.GPUTimeStamp;
        }
        srcSize = sizeof(cl_ulong);
        break;

    case CL_PROFILING_COMMAND_SUBMIT:
        src = &submitTimeStamp.CPUTimeinNS;
        if (DebugManager.flags.ReturnRawGpuTimestamps.get()) {
            src = &submitTimeStamp.GPUTimeStamp;
        }
        srcSize = sizeof(cl_ulong);
        break;

    case CL_PROFILING_COMMAND_START:
        calcProfilingData();
        src = &startTimeStamp;
        srcSize = sizeof(cl_ulong);
        break;

    case CL_PROFILING_COMMAND_END:
        calcProfilingData();
        src = &endTimeStamp;
        srcSize = sizeof(cl_ulong);
        break;

    case CL_PROFILING_COMMAND_COMPLETE:
        calcProfilingData();
        src = &completeTimeStamp;
        srcSize = sizeof(cl_ulong);
        break;

    case CL_PROFILING_COMMAND_PERFCOUNTERS_INTEL:
        if (!perfCountersEnabled) {
            return CL_INVALID_VALUE;
        }

        if (!cmdQueue->getPerfCounters()->getApiReport(perfCounterNode,
                                                       paramValueSize,
                                                       paramValue,
                                                       paramValueSizeRet,
                                                       updateStatusAndCheckCompletion())) {
            return CL_PROFILING_INFO_NOT_AVAILABLE;
        }
        return CL_SUCCESS;
    default:
        return CL_INVALID_VALUE;
    }

    auto getInfoStatus = GetInfo::getInfo(paramValue, paramValueSize, src, srcSize);
    retVal = changeGetInfoStatusToCLResultType(getInfoStatus);
    GetInfo::setParamValueReturnSize(paramValueSizeRet, srcSize, getInfoStatus);

    return retVal;
} // namespace NEO

uint32_t Event::getCompletionStamp() const {
    return this->taskCount;
}

void Event::updateCompletionStamp(uint32_t gpgpuTaskCount, uint32_t bcsTaskCount, uint32_t tasklevel, FlushStamp flushStamp) {
    this->taskCount = gpgpuTaskCount;
    this->bcsTaskCount = bcsTaskCount;
    this->taskLevel = tasklevel;
    this->flushStamp->setStamp(flushStamp);
}

cl_ulong Event::getDelta(cl_ulong startTime,
                         cl_ulong endTime) {
    cl_ulong Max = maxNBitValue(OCLRT_NUM_TIMESTAMP_BITS);
    cl_ulong Delta = 0;

    startTime &= Max;
    endTime &= Max;

    if (startTime > endTime) {
        Delta = Max - startTime;
        Delta += endTime;
    } else {
        Delta = endTime - startTime;
    }

    return Delta;
}

bool Event::calcProfilingData() {
    if (!dataCalculated && !profilingCpuPath) {
        if (timestampPacketContainer && timestampPacketContainer->peekNodes().size() > 0) {
            const auto timestamps = timestampPacketContainer->peekNodes();

            if (DebugManager.flags.PrintTimestampPacketContents.get()) {
                for (auto i = 0u; i < timestamps.size(); i++) {
                    std::cout << "Timestamp " << i << ", "
                              << "profiling capable: " << timestamps[i]->isProfilingCapable() << ", ";
                    for (auto j = 0u; j < timestamps[i]->tagForCpuAccess->packetsUsed; j++) {
                        const auto &packet = timestamps[i]->tagForCpuAccess->packets[j];
                        std::cout << "packet " << j << ": "
                                  << "global start: " << packet.globalStart << ", "
                                  << "global end: " << packet.globalEnd << ", "
                                  << "context start: " << packet.contextStart << ", "
                                  << "context end: " << packet.contextEnd << std::endl;
                    }
                }
            }

            uint64_t globalStartTS = timestamps[0]->tagForCpuAccess->packets[0].globalStart;
            uint64_t globalEndTS = timestamps[0]->tagForCpuAccess->packets[0].globalEnd;

            for (const auto &timestamp : timestamps) {
                if (!timestamp->isProfilingCapable()) {
                    continue;
                }
                for (auto i = 0u; i < timestamp->tagForCpuAccess->packetsUsed; ++i) {
                    const auto &packet = timestamp->tagForCpuAccess->packets[i];
                    if (globalStartTS > packet.globalStart) {
                        globalStartTS = packet.globalStart;
                    }
                    if (globalEndTS < packet.globalEnd) {
                        globalEndTS = packet.globalEnd;
                    }
                }
            }
            calculateProfilingDataInternal(globalStartTS, globalEndTS, &globalEndTS, globalStartTS);

        } else if (timeStampNode) {
            if (HwHelper::get(this->cmdQueue->getDevice().getHardwareInfo().platform.eRenderCoreFamily).useOnlyGlobalTimestamps()) {
                calculateProfilingDataInternal(
                    timeStampNode->tagForCpuAccess->GlobalStartTS,
                    timeStampNode->tagForCpuAccess->GlobalEndTS,
                    &timeStampNode->tagForCpuAccess->GlobalEndTS,
                    timeStampNode->tagForCpuAccess->GlobalStartTS);
            } else {
                calculateProfilingDataInternal(
                    timeStampNode->tagForCpuAccess->ContextStartTS,
                    timeStampNode->tagForCpuAccess->ContextEndTS,
                    &timeStampNode->tagForCpuAccess->ContextCompleteTS,
                    timeStampNode->tagForCpuAccess->GlobalStartTS);
            }
        }
    }
    return dataCalculated;
}

void Event::calculateProfilingDataInternal(uint64_t contextStartTS, uint64_t contextEndTS, uint64_t *contextCompleteTS, uint64_t globalStartTS) {

    uint64_t gpuDuration = 0;
    uint64_t cpuDuration = 0;

    uint64_t gpuCompleteDuration = 0;
    uint64_t cpuCompleteDuration = 0;

    auto &hwHelper = HwHelper::get(this->cmdQueue->getDevice().getHardwareInfo().platform.eRenderCoreFamily);
    auto frequency = cmdQueue->getDevice().getDeviceInfo().profilingTimerResolution;
    auto gpuTimeStamp = queueTimeStamp.GPUTimeStamp;

    int64_t c0 = queueTimeStamp.CPUTimeinNS - hwHelper.getGpuTimeStampInNS(gpuTimeStamp, frequency);

    startTimeStamp = static_cast<uint64_t>(globalStartTS * frequency) + c0;
    if (startTimeStamp < queueTimeStamp.CPUTimeinNS) {
        c0 += static_cast<uint64_t>((1ULL << (hwHelper.getGlobalTimeStampBits())) * frequency);
        startTimeStamp = static_cast<uint64_t>(globalStartTS * frequency) + c0;
    }

    /* calculation based on equation
       CpuTime = GpuTime * scalar + const( == c0)
       scalar = DeltaCpu( == dCpu) / DeltaGpu( == dGpu)
       to determine the value of the const we can use one pair of values
       const = CpuTimeQueue - GpuTimeQueue * scalar
    */

    //If device enqueue has not updated complete timestamp, assign end timestamp
    gpuDuration = getDelta(contextStartTS, contextEndTS);
    if (*contextCompleteTS == 0) {
        *contextCompleteTS = contextEndTS;
        gpuCompleteDuration = gpuDuration;
    } else {
        gpuCompleteDuration = getDelta(contextStartTS, *contextCompleteTS);
    }
    cpuDuration = static_cast<uint64_t>(gpuDuration * frequency);
    cpuCompleteDuration = static_cast<uint64_t>(gpuCompleteDuration * frequency);

    endTimeStamp = startTimeStamp + cpuDuration;
    completeTimeStamp = startTimeStamp + cpuCompleteDuration;

    if (DebugManager.flags.ReturnRawGpuTimestamps.get()) {
        startTimeStamp = contextStartTS;
        endTimeStamp = contextEndTS;
        completeTimeStamp = *contextCompleteTS;
    }

    dataCalculated = true;
}

inline bool Event::wait(bool blocking, bool useQuickKmdSleep) {
    while (this->taskCount == CompletionStamp::notReady) {
        if (blocking == false) {
            return false;
        }
    }

    cmdQueue->waitUntilComplete(taskCount.load(), this->bcsTaskCount, flushStamp->peekStamp(), useQuickKmdSleep);
    updateExecutionStatus();

    DEBUG_BREAK_IF(this->taskLevel == CompletionStamp::notReady && this->executionStatus >= 0);

    auto *allocationStorage = cmdQueue->getGpgpuCommandStreamReceiver().getInternalAllocationStorage();
    allocationStorage->cleanAllocationList(this->taskCount, TEMPORARY_ALLOCATION);

    return true;
}

void Event::updateExecutionStatus() {
    if (taskLevel == CompletionStamp::notReady) {
        return;
    }

    int32_t statusSnapshot = executionStatus;
    if (isStatusCompleted(statusSnapshot)) {
        executeCallbacks(statusSnapshot);
        return;
    }

    if (peekIsBlocked()) {
        transitionExecutionStatus(CL_QUEUED);
        executeCallbacks(CL_QUEUED);
        return;
    }

    if (statusSnapshot == CL_QUEUED) {
        bool abortBlockedTasks = isStatusCompletedByTermination(statusSnapshot);
        submitCommand(abortBlockedTasks);
        transitionExecutionStatus(CL_SUBMITTED);
        executeCallbacks(CL_SUBMITTED);
        unblockEventsBlockedByThis(CL_SUBMITTED);
        // Note : Intentional fallthrough (no return) to check for CL_COMPLETE
    }

    if ((cmdQueue != nullptr) && (cmdQueue->isCompleted(getCompletionStamp(), this->bcsTaskCount))) {
        transitionExecutionStatus(CL_COMPLETE);
        executeCallbacks(CL_COMPLETE);
        unblockEventsBlockedByThis(CL_COMPLETE);
        auto *allocationStorage = cmdQueue->getGpgpuCommandStreamReceiver().getInternalAllocationStorage();
        allocationStorage->cleanAllocationList(this->taskCount, TEMPORARY_ALLOCATION);
        return;
    }

    transitionExecutionStatus(CL_SUBMITTED);
}

void Event::addChild(Event &childEvent) {
    childEvent.parentCount++;
    childEvent.incRefInternal();
    childEventsToNotify.pushRefFrontOne(childEvent);
    DBG_LOG(EventsDebugEnable, "addChild: Parent event:", this, "child:", &childEvent);
    if (DebugManager.flags.TrackParentEvents.get()) {
        childEvent.parentEvents.push_back(this);
    }
    if (executionStatus == CL_COMPLETE) {
        unblockEventsBlockedByThis(CL_COMPLETE);
    }
}

void Event::unblockEventsBlockedByThis(int32_t transitionStatus) {

    int32_t status = transitionStatus;
    (void)status;
    DEBUG_BREAK_IF(!(isStatusCompleted(status) || (peekIsSubmitted(status))));

    uint32_t taskLevelToPropagate = CompletionStamp::notReady;

    if (isStatusCompletedByTermination(transitionStatus) == false) {
        //if we are event on top of the tree , obtain taskLevel from CSR
        if (taskLevel == CompletionStamp::notReady) {
            this->taskLevel = getTaskLevel(); // NOLINT(clang-analyzer-optin.cplusplus.VirtualCall)
            taskLevelToPropagate = this->taskLevel;
        } else {
            taskLevelToPropagate = taskLevel + 1;
        }
    }

    auto childEventRef = childEventsToNotify.detachNodes();
    while (childEventRef != nullptr) {
        auto childEvent = childEventRef->ref;

        childEvent->unblockEventBy(*this, taskLevelToPropagate, transitionStatus);

        childEvent->decRefInternal();
        auto next = childEventRef->next;
        delete childEventRef;
        childEventRef = next;
    }
}

bool Event::setStatus(cl_int status) {
    int32_t prevStatus = executionStatus;

    DBG_LOG(EventsDebugEnable, "setStatus event", this, " new status", status, "previousStatus", prevStatus);

    if (isStatusCompleted(prevStatus)) {
        return false;
    }

    if (status == prevStatus) {
        return false;
    }

    if (peekIsBlocked() && (isStatusCompletedByTermination(status) == false)) {
        return false;
    }

    if ((status == CL_SUBMITTED) || (isStatusCompleted(status))) {
        bool abortBlockedTasks = isStatusCompletedByTermination(status);
        submitCommand(abortBlockedTasks);
    }

    this->incRefInternal();
    transitionExecutionStatus(status);
    if (isStatusCompleted(status) || (status == CL_SUBMITTED)) {
        unblockEventsBlockedByThis(status);
    }
    executeCallbacks(status);
    this->decRefInternal();
    return true;
}

void Event::transitionExecutionStatus(int32_t newExecutionStatus) const {
    int32_t prevStatus = executionStatus;
    DBG_LOG(EventsDebugEnable, "transitionExecutionStatus event", this, " new status", newExecutionStatus, "previousStatus", prevStatus);

    while (prevStatus > newExecutionStatus) {
        executionStatus.compare_exchange_weak(prevStatus, newExecutionStatus);
    }
    if (NEO::DebugManager.flags.EventsTrackerEnable.get()) {
        EventsTracker::getEventsTracker().notifyTransitionedExecutionStatus();
    }
}

void Event::submitCommand(bool abortTasks) {
    std::unique_ptr<Command> cmdToProcess(cmdToSubmit.exchange(nullptr));
    if (cmdToProcess.get() != nullptr) {
        auto lockCSR = getCommandQueue()->getGpgpuCommandStreamReceiver().obtainUniqueOwnership();

        if (this->isProfilingEnabled()) {
            if (timeStampNode) {
                this->cmdQueue->getGpgpuCommandStreamReceiver().makeResident(*timeStampNode->getBaseGraphicsAllocation());
                cmdToProcess->timestamp = timeStampNode;
            }
            if (profilingCpuPath) {
                setSubmitTimeStamp();
                setStartTimeStamp();
            } else {
                this->cmdQueue->getDevice().getOSTime()->getCpuGpuTime(&submitTimeStamp);
            }
            if (perfCountersEnabled && perfCounterNode) {
                this->cmdQueue->getGpgpuCommandStreamReceiver().makeResident(*perfCounterNode->getBaseGraphicsAllocation());
            }
        }
        auto &complStamp = cmdToProcess->submit(taskLevel, abortTasks);
        if (profilingCpuPath && this->isProfilingEnabled()) {
            setEndTimeStamp();
        }
        updateTaskCount(complStamp.taskCount, cmdQueue->peekBcsTaskCount());
        flushStamp->setStamp(complStamp.flushStamp);
        submittedCmd.exchange(cmdToProcess.release());
    } else if (profilingCpuPath && endTimeStamp == 0) {
        setEndTimeStamp();
    }
    if (this->taskCount == CompletionStamp::notReady) {
        if (!this->isUserEvent() && this->eventWithoutCommand) {
            if (this->cmdQueue) {
                auto lockCSR = this->getCommandQueue()->getGpgpuCommandStreamReceiver().obtainUniqueOwnership();
                updateTaskCount(this->cmdQueue->getGpgpuCommandStreamReceiver().peekTaskCount(), cmdQueue->peekBcsTaskCount());
            }
        }
        //make sure that task count is synchronized for events with kernels
        if (!this->eventWithoutCommand && !abortTasks) {
            this->synchronizeTaskCount();
        }
    }
}

cl_int Event::waitForEvents(cl_uint numEvents,
                            const cl_event *eventList) {
    if (numEvents == 0) {
        return CL_SUCCESS;
    }

    //flush all command queues
    for (const cl_event *it = eventList, *end = eventList + numEvents; it != end; ++it) {
        Event *event = castToObjectOrAbort<Event>(*it);
        if (event->cmdQueue) {
            if (event->taskLevel != CompletionStamp::notReady) {
                event->cmdQueue->flush();
            }
        }
    }

    using WorkerListT = StackVec<cl_event, 64>;
    WorkerListT workerList1(eventList, eventList + numEvents);
    WorkerListT workerList2;
    workerList2.reserve(numEvents);

    // pointers to workerLists - for fast swap operations
    WorkerListT *currentlyPendingEvents = &workerList1;
    WorkerListT *pendingEventsLeft = &workerList2;

    while (currentlyPendingEvents->size() > 0) {
        for (auto &e : *currentlyPendingEvents) {
            Event *event = castToObjectOrAbort<Event>(e);
            if (event->peekExecutionStatus() < CL_COMPLETE) {
                return CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST;
            }

            if (event->wait(false, false) == false) {
                pendingEventsLeft->push_back(event);
            }
        }

        std::swap(currentlyPendingEvents, pendingEventsLeft);
        pendingEventsLeft->clear();
    }

    return CL_SUCCESS;
}

uint32_t Event::getTaskLevel() {
    return taskLevel;
}

inline void Event::unblockEventBy(Event &event, uint32_t taskLevel, int32_t transitionStatus) {
    int32_t numEventsBlockingThis = --parentCount;
    DEBUG_BREAK_IF(numEventsBlockingThis < 0);

    int32_t blockerStatus = transitionStatus;
    DEBUG_BREAK_IF(!(isStatusCompleted(blockerStatus) || peekIsSubmitted(blockerStatus)));

    if ((numEventsBlockingThis > 0) && (isStatusCompletedByTermination(blockerStatus) == false)) {
        return;
    }
    DBG_LOG(EventsDebugEnable, "Event", this, "is unblocked by", &event);

    if (this->taskLevel == CompletionStamp::notReady) {
        this->taskLevel = std::max(cmdQueue->getGpgpuCommandStreamReceiver().peekTaskLevel(), taskLevel);
    } else {
        this->taskLevel = std::max(this->taskLevel.load(), taskLevel);
    }

    int32_t statusToPropagate = CL_SUBMITTED;
    if (isStatusCompletedByTermination(blockerStatus)) {
        statusToPropagate = blockerStatus;
    }
    setStatus(statusToPropagate);

    //event may be completed after this operation, transtition the state to not block others.
    this->updateExecutionStatus();
}

bool Event::updateStatusAndCheckCompletion() {
    auto currentStatus = updateEventAndReturnCurrentStatus();
    return isStatusCompleted(currentStatus);
}

bool Event::isReadyForSubmission() {
    return taskLevel != CompletionStamp::notReady ? true : false;
}

void Event::addCallback(Callback::ClbFuncT fn, cl_int type, void *data) {
    ECallbackTarget target = translateToCallbackTarget(type);
    if (target == ECallbackTarget::Invalid) {
        DEBUG_BREAK_IF(true);
        return;
    }
    incRefInternal();

    // Note from spec :
    //    "All callbacks registered for an event object must be called.
    //     All enqueued callbacks shall be called before the event object is destroyed."
    // That's why each registered calback increments the internal refcount
    incRefInternal();
    DBG_LOG(EventsDebugEnable, "event", this, "addCallback", "ECallbackTarget", (uint32_t)type);
    callbacks[(uint32_t)target].pushFrontOne(*new Callback(this, fn, type, data));

    // Callback added after event reached its "completed" state
    if (updateStatusAndCheckCompletion()) {
        int32_t status = executionStatus;
        DBG_LOG(EventsDebugEnable, "event", this, "addCallback executing callbacks with status", status);
        executeCallbacks(status);
    }

    if (peekHasCallbacks() && !isUserEvent() && DebugManager.flags.EnableAsyncEventsHandler.get()) {
        ctx->getAsyncEventsHandler().registerEvent(this);
    }

    decRefInternal();
}

void Event::executeCallbacks(int32_t executionStatusIn) {
    int32_t execStatus = executionStatusIn;
    bool terminated = isStatusCompletedByTermination(execStatus);
    ECallbackTarget target;
    if (terminated) {
        target = ECallbackTarget::Completed;
    } else {
        target = translateToCallbackTarget(execStatus);
        if (target == ECallbackTarget::Invalid) {
            DEBUG_BREAK_IF(true);
            return;
        }
    }

    // run through all needed callback targets and execute callbacks
    for (uint32_t i = 0; i <= (uint32_t)target; ++i) {
        auto cb = callbacks[i].detachNodes();
        auto curr = cb;
        while (curr != nullptr) {
            auto next = curr->next;
            if (terminated) {
                curr->overrideCallbackExecutionStatusTarget(execStatus);
            }
            DBG_LOG(EventsDebugEnable, "event", this, "executing callback", "ECallbackTarget", (uint32_t)target);
            curr->execute();
            decRefInternal();
            delete curr;
            curr = next;
        }
    }
}

void Event::tryFlushEvent() {
    //only if event is not completed, completed event has already been flushed
    if (cmdQueue && updateStatusAndCheckCompletion() == false) {
        //flush the command queue only if it is not blocked event
        if (taskLevel != CompletionStamp::notReady) {
            cmdQueue->getGpgpuCommandStreamReceiver().flushBatchedSubmissions();
        }
    }
}

void Event::setQueueTimeStamp() {
    if (this->profilingEnabled && (this->cmdQueue != nullptr)) {
        this->cmdQueue->getDevice().getOSTime()->getCpuTime(&queueTimeStamp.CPUTimeinNS);
    }
}

void Event::setSubmitTimeStamp() {
    if (this->profilingEnabled && (this->cmdQueue != nullptr)) {
        this->cmdQueue->getDevice().getOSTime()->getCpuTime(&submitTimeStamp.CPUTimeinNS);
    }
}

void Event::setStartTimeStamp() {
    if (this->profilingEnabled && (this->cmdQueue != nullptr)) {
        this->cmdQueue->getDevice().getOSTime()->getCpuTime(&startTimeStamp);
    }
}

void Event::setEndTimeStamp() {
    if (this->profilingEnabled && (this->cmdQueue != nullptr)) {
        this->cmdQueue->getDevice().getOSTime()->getCpuTime(&endTimeStamp);
        completeTimeStamp = endTimeStamp;
    }
}

TagNode<HwTimeStamps> *Event::getHwTimeStampNode() {
    if (!timeStampNode) {
        timeStampNode = cmdQueue->getGpgpuCommandStreamReceiver().getEventTsAllocator()->getTag();
    }
    return timeStampNode;
}

TagNode<HwPerfCounter> *Event::getHwPerfCounterNode() {

    if (!perfCounterNode && cmdQueue->getPerfCounters()) {
        const uint32_t gpuReportSize = HwPerfCounter::getSize(*(cmdQueue->getPerfCounters()));
        perfCounterNode = cmdQueue->getGpgpuCommandStreamReceiver().getEventPerfCountAllocator(gpuReportSize)->getTag();
    }
    return perfCounterNode;
}

void Event::addTimestampPacketNodes(const TimestampPacketContainer &inputTimestampPacketContainer) {
    timestampPacketContainer->assignAndIncrementNodesRefCounts(inputTimestampPacketContainer);
}

TimestampPacketContainer *Event::getTimestampPacketNodes() const { return timestampPacketContainer.get(); }

bool Event::checkUserEventDependencies(cl_uint numEventsInWaitList, const cl_event *eventWaitList) {
    bool userEventsDependencies = false;

    for (uint32_t i = 0; i < numEventsInWaitList; i++) {
        auto event = castToObjectOrAbort<Event>(eventWaitList[i]);
        if (!event->isReadyForSubmission()) {
            userEventsDependencies = true;
            break;
        }
    }
    return userEventsDependencies;
}

} // namespace NEO