File: kernel.h

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (561 lines) | stat: -rw-r--r-- 21,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#pragma once
#include "shared/source/command_stream/command_stream_receiver_hw.h"
#include "shared/source/command_stream/thread_arbitration_policy.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/device/device.h"
#include "shared/source/helpers/address_patch.h"
#include "shared/source/helpers/preamble.h"
#include "shared/source/unified_memory/unified_memory.h"
#include "shared/source/utilities/stackvec.h"

#include "opencl/extensions/public/cl_ext_private.h"
#include "opencl/source/api/cl_types.h"
#include "opencl/source/device_queue/device_queue.h"
#include "opencl/source/helpers/base_object.h"
#include "opencl/source/helpers/properties_helper.h"
#include "opencl/source/kernel/kernel_execution_type.h"
#include "opencl/source/program/kernel_info.h"
#include "opencl/source/program/program.h"

#include "csr_properties_flags.h"

#include <vector>

namespace NEO {
struct CompletionStamp;
class Buffer;
class CommandStreamReceiver;
class GraphicsAllocation;
class ImageTransformer;
class Surface;
class PrintfHandler;

template <>
struct OpenCLObjectMapper<_cl_kernel> {
    typedef class Kernel DerivedType;
};

class Kernel : public BaseObject<_cl_kernel> {
  public:
    static const cl_ulong objectMagic = 0x3284ADC8EA0AFE25LL;
    static const uint32_t kernelBinaryAlignement = 64;

    enum kernelArgType {
        NONE_OBJ,
        IMAGE_OBJ,
        BUFFER_OBJ,
        PIPE_OBJ,
        SVM_OBJ,
        SVM_ALLOC_OBJ,
        SAMPLER_OBJ,
        ACCELERATOR_OBJ,
        DEVICE_QUEUE_OBJ,
        SLM_OBJ
    };

    struct SimpleKernelArgInfo {
        kernelArgType type;
        void *object;
        const void *value;
        size_t size;
        GraphicsAllocation *pSvmAlloc;
        cl_mem_flags svmFlags;
        bool isPatched = false;
        bool isStatelessUncacheable = false;
    };

    typedef int32_t (Kernel::*KernelArgHandler)(uint32_t argIndex,
                                                size_t argSize,
                                                const void *argVal);

    template <typename kernel_t = Kernel, typename program_t = Program>
    static kernel_t *create(program_t *program, const KernelInfo &kernelInfo, cl_int *errcodeRet) {
        cl_int retVal;
        kernel_t *pKernel = nullptr;

        auto clDevice = program->getDevice().template getSpecializedDevice<ClDevice>();

        pKernel = new kernel_t(program, kernelInfo, *clDevice);
        retVal = pKernel->initialize();

        if (retVal != CL_SUCCESS) {
            delete pKernel;
            pKernel = nullptr;
        }

        if (errcodeRet) {
            *errcodeRet = retVal;
        }

        if (FileLoggerInstance().enabled()) {
            std::string source;
            program->getSource(source);
            FileLoggerInstance().dumpKernel(kernelInfo.kernelDescriptor.kernelMetadata.kernelName, source);
        }

        return pKernel;
    }

    Kernel &operator=(const Kernel &) = delete;
    Kernel(const Kernel &) = delete;

    ~Kernel() override;

    static bool isMemObj(kernelArgType kernelArg) {
        return kernelArg == BUFFER_OBJ || kernelArg == IMAGE_OBJ || kernelArg == PIPE_OBJ;
    }

    bool isAuxTranslationRequired() const { return auxTranslationRequired; }

    char *getCrossThreadData() const {
        return crossThreadData;
    }

    uint32_t getCrossThreadDataSize() const {
        return crossThreadDataSize;
    }

    cl_int initialize();

    MOCKABLE_VIRTUAL cl_int cloneKernel(Kernel *pSourceKernel);

    MOCKABLE_VIRTUAL bool canTransformImages() const;
    MOCKABLE_VIRTUAL bool isPatched() const;

    // API entry points
    cl_int setArg(uint32_t argIndex, size_t argSize, const void *argVal);
    cl_int setArgSvm(uint32_t argIndex, size_t svmAllocSize, void *svmPtr, GraphicsAllocation *svmAlloc, cl_mem_flags svmFlags);
    cl_int setArgSvmAlloc(uint32_t argIndex, void *svmPtr, GraphicsAllocation *svmAlloc);

    void setSvmKernelExecInfo(GraphicsAllocation *argValue);
    void clearSvmKernelExecInfo();

    cl_int getInfo(cl_kernel_info paramName, size_t paramValueSize,
                   void *paramValue, size_t *paramValueSizeRet) const;
    void getAdditionalInfo(cl_kernel_info paramName, const void *&paramValue, size_t &paramValueSizeRet) const;
    void getAdditionalWorkGroupInfo(cl_kernel_work_group_info paramName, const void *&paramValue, size_t &paramValueSizeRet) const;

    cl_int getArgInfo(cl_uint argIndx, cl_kernel_arg_info paramName,
                      size_t paramValueSize, void *paramValue, size_t *paramValueSizeRet) const;

    cl_int getWorkGroupInfo(cl_device_id device, cl_kernel_work_group_info paramName,
                            size_t paramValueSize, void *paramValue, size_t *paramValueSizeRet) const;

    cl_int getSubGroupInfo(cl_kernel_sub_group_info paramName,
                           size_t inputValueSize, const void *inputValue,
                           size_t paramValueSize, void *paramValue,
                           size_t *paramValueSizeRet) const;

    const void *getKernelHeap() const;
    void *getSurfaceStateHeap() const;
    const void *getDynamicStateHeap() const;

    size_t getKernelHeapSize() const;
    size_t getSurfaceStateHeapSize() const;
    size_t getDynamicStateHeapSize() const;
    size_t getNumberOfBindingTableStates() const;
    size_t getBindingTableOffset() const {
        return localBindingTableOffset;
    }

    void resizeSurfaceStateHeap(void *pNewSsh, size_t newSshSize, size_t newBindingTableCount, size_t newBindingTableOffset);

    void substituteKernelHeap(void *newKernelHeap, size_t newKernelHeapSize);
    bool isKernelHeapSubstituted() const;
    uint64_t getKernelId() const;
    void setKernelId(uint64_t newKernelId);
    uint32_t getStartOffset() const;
    void setStartOffset(uint32_t offset);

    const std::vector<SimpleKernelArgInfo> &getKernelArguments() const {
        return kernelArguments;
    }

    size_t getKernelArgsNumber() const {
        return kernelInfo.kernelArgInfo.size();
    }

    bool requiresSshForBuffers() const {
        return kernelInfo.requiresSshForBuffers;
    }

    const KernelInfo &getKernelInfo() const {
        return kernelInfo;
    }

    const ClDevice &getDevice() const {
        return device;
    }

    Context &getContext() const {
        return context ? *context : program->getContext();
    }

    void setContext(Context *context) {
        this->context = context;
    }

    Program *getProgram() const { return program; }

    uint32_t getScratchSize() {
        return kernelInfo.patchInfo.mediavfestate ? kernelInfo.patchInfo.mediavfestate->PerThreadScratchSpace : 0;
    }

    uint32_t getPrivateScratchSize() {
        return kernelInfo.patchInfo.mediaVfeStateSlot1 ? kernelInfo.patchInfo.mediaVfeStateSlot1->PerThreadScratchSpace : 0;
    }

    void createReflectionSurface();
    template <bool mockable = false>
    void patchReflectionSurface(DeviceQueue *devQueue, PrintfHandler *printfHandler);

    void patchDefaultDeviceQueue(DeviceQueue *devQueue);
    void patchEventPool(DeviceQueue *devQueue);
    void patchBlocksSimdSize();
    bool usesSyncBuffer();
    void patchSyncBuffer(Device &device, GraphicsAllocation *gfxAllocation, size_t bufferOffset);
    void patchBindlessSurfaceStateOffsets(const size_t sshOffset);

    GraphicsAllocation *getKernelReflectionSurface() const {
        return kernelReflectionSurface;
    }

    size_t getInstructionHeapSizeForExecutionModel() const;

    // Helpers
    cl_int setArg(uint32_t argIndex, uint32_t argValue);
    cl_int setArg(uint32_t argIndex, uint64_t argValue);
    cl_int setArg(uint32_t argIndex, cl_mem argValue);
    cl_int setArg(uint32_t argIndex, cl_mem argValue, uint32_t mipLevel);

    // Handlers
    void setKernelArgHandler(uint32_t argIndex, KernelArgHandler handler);

    void unsetArg(uint32_t argIndex);

    cl_int setArgImmediate(uint32_t argIndex,
                           size_t argSize,
                           const void *argVal);

    cl_int setArgBuffer(uint32_t argIndex,
                        size_t argSize,
                        const void *argVal);

    cl_int setArgPipe(uint32_t argIndex,
                      size_t argSize,
                      const void *argVal);

    cl_int setArgImage(uint32_t argIndex,
                       size_t argSize,
                       const void *argVal);

    cl_int setArgImageWithMipLevel(uint32_t argIndex,
                                   size_t argSize,
                                   const void *argVal, uint32_t mipLevel);

    cl_int setArgLocal(uint32_t argIndex,
                       size_t argSize,
                       const void *argVal);

    cl_int setArgSampler(uint32_t argIndex,
                         size_t argSize,
                         const void *argVal);

    cl_int setArgAccelerator(uint32_t argIndex,
                             size_t argSize,
                             const void *argVal);

    cl_int setArgDevQueue(uint32_t argIndex,
                          size_t argSize,
                          const void *argVal);

    void storeKernelArg(uint32_t argIndex,
                        kernelArgType argType,
                        void *argObject,
                        const void *argValue,
                        size_t argSize,
                        GraphicsAllocation *argSvmAlloc = nullptr,
                        cl_mem_flags argSvmFlags = 0);
    const void *getKernelArg(uint32_t argIndex) const;
    const SimpleKernelArgInfo &getKernelArgInfo(uint32_t argIndex) const;

    bool getAllowNonUniform() const { return program->getAllowNonUniform(); }
    bool isVmeKernel() const { return kernelInfo.isVmeWorkload; }
    bool requiresSpecialPipelineSelectMode() const { return specialPipelineSelectMode; }

    //residency for kernel surfaces
    MOCKABLE_VIRTUAL void makeResident(CommandStreamReceiver &commandStreamReceiver);
    MOCKABLE_VIRTUAL void getResidency(std::vector<Surface *> &dst);
    bool requiresCoherency();
    void resetSharedObjectsPatchAddresses();
    bool isUsingSharedObjArgs() const { return usingSharedObjArgs; }
    bool hasUncacheableStatelessArgs() const { return statelessUncacheableArgsCount > 0; }

    bool hasPrintfOutput() const;

    void setReflectionSurfaceBlockBtOffset(uint32_t blockID, uint32_t offset);

    cl_int checkCorrectImageAccessQualifier(cl_uint argIndex,
                                            size_t argSize,
                                            const void *argValue) const;

    uint32_t *globalWorkOffsetX;
    uint32_t *globalWorkOffsetY;
    uint32_t *globalWorkOffsetZ;

    uint32_t *localWorkSizeX;
    uint32_t *localWorkSizeY;
    uint32_t *localWorkSizeZ;

    uint32_t *localWorkSizeX2;
    uint32_t *localWorkSizeY2;
    uint32_t *localWorkSizeZ2;

    uint32_t *globalWorkSizeX;
    uint32_t *globalWorkSizeY;
    uint32_t *globalWorkSizeZ;

    uint32_t *enqueuedLocalWorkSizeX;
    uint32_t *enqueuedLocalWorkSizeY;
    uint32_t *enqueuedLocalWorkSizeZ;

    uint32_t *numWorkGroupsX;
    uint32_t *numWorkGroupsY;
    uint32_t *numWorkGroupsZ;

    uint32_t *maxWorkGroupSizeForCrossThreadData;
    uint32_t maxKernelWorkGroupSize = 0;
    uint32_t *workDim;
    uint32_t *dataParameterSimdSize;
    uint32_t *parentEventOffset;
    uint32_t *preferredWkgMultipleOffset;

    static uint32_t dummyPatchLocation;

    std::vector<size_t> slmSizes;

    uint32_t allBufferArgsStateful = CL_TRUE;

    uint32_t slmTotalSize;
    bool isBuiltIn;
    const bool isParentKernel;
    const bool isSchedulerKernel;

    uint32_t getThreadArbitrationPolicy() const {
        return threadArbitrationPolicy;
    }
    KernelExecutionType getExecutionType() const {
        return executionType;
    }
    bool isUsingSyncBuffer() const {
        return (kernelInfo.patchInfo.pAllocateSyncBuffer != nullptr);
    }

    bool checkIfIsParentKernelAndBlocksUsesPrintf();

    bool is32Bit() const {
        return kernelInfo.gpuPointerSize == 4;
    }

    int32_t getDebugSurfaceBti() const {
        if (kernelInfo.patchInfo.pAllocateSystemThreadSurface) {
            return kernelInfo.patchInfo.pAllocateSystemThreadSurface->BTI;
        }
        return -1;
    }

    size_t getPerThreadSystemThreadSurfaceSize() const {
        if (kernelInfo.patchInfo.pAllocateSystemThreadSurface) {
            return kernelInfo.patchInfo.pAllocateSystemThreadSurface->PerThreadSystemThreadSurfaceSize;
        }
        return 0;
    }

    std::vector<PatchInfoData> &getPatchInfoDataList() { return patchInfoDataList; };
    bool usesOnlyImages() const {
        return usingImagesOnly;
    }

    void fillWithBuffersForAuxTranslation(MemObjsForAuxTranslation &memObjsForAuxTranslation);

    MOCKABLE_VIRTUAL bool requiresCacheFlushCommand(const CommandQueue &commandQueue) const;

    using CacheFlushAllocationsVec = StackVec<GraphicsAllocation *, 32>;
    void getAllocationsForCacheFlush(CacheFlushAllocationsVec &out) const;

    void setAuxTranslationDirection(AuxTranslationDirection auxTranslationDirection) {
        this->auxTranslationDirection = auxTranslationDirection;
    }
    void setUnifiedMemorySyncRequirement(bool isUnifiedMemorySyncRequired) {
        this->isUnifiedMemorySyncRequired = isUnifiedMemorySyncRequired;
    }
    void setUnifiedMemoryProperty(cl_kernel_exec_info infoType, bool infoValue);
    void setUnifiedMemoryExecInfo(GraphicsAllocation *argValue);
    void clearUnifiedMemoryExecInfo();

    bool areStatelessWritesUsed() { return containsStatelessWrites; }
    int setKernelThreadArbitrationPolicy(uint32_t propertyValue);
    cl_int setKernelExecutionType(cl_execution_info_kernel_type_intel executionType);
    void setThreadArbitrationPolicy(uint32_t policy) {
        this->threadArbitrationPolicy = policy;
    }
    void getSuggestedLocalWorkSize(const cl_uint workDim, const size_t *globalWorkSize, const size_t *globalWorkOffset,
                                   size_t *localWorkSize);
    uint32_t getMaxWorkGroupCount(const cl_uint workDim, const size_t *localWorkSize, const CommandQueue *commandQueue) const;

    uint64_t getKernelStartOffset(
        const bool localIdsGenerationByRuntime,
        const bool kernelUsesLocalIds,
        const bool isCssUsed) const;

    bool requiresPerDssBackedBuffer() const;
    bool requiresLimitedWorkgroupSize() const;
    bool isKernelDebugEnabled() const { return debugEnabled; }
    int32_t setAdditionalKernelExecInfoWithParam(uint32_t paramName);
    void setAdditionalKernelExecInfo(uint32_t additionalKernelExecInfo);
    uint32_t getAdditionalKernelExecInfo() const;
    MOCKABLE_VIRTUAL bool requiresWaDisableRccRhwoOptimization() const;

  protected:
    struct ObjectCounts {
        uint32_t imageCount;
        uint32_t samplerCount;
    };

    class ReflectionSurfaceHelper {
      public:
        static const uint64_t undefinedOffset = (uint64_t)-1;

        static void setKernelDataHeader(void *reflectionSurface, uint32_t numberOfBlocks,
                                        uint32_t parentImages, uint32_t parentSamplers,
                                        uint32_t imageOffset, uint32_t samplerOffset) {
            IGIL_KernelDataHeader *kernelDataHeader = reinterpret_cast<IGIL_KernelDataHeader *>(reflectionSurface);
            kernelDataHeader->m_numberOfKernels = numberOfBlocks;
            kernelDataHeader->m_ParentKernelImageCount = parentImages;
            kernelDataHeader->m_ParentSamplerCount = parentSamplers;
            kernelDataHeader->m_ParentImageDataOffset = imageOffset;
            kernelDataHeader->m_ParentSamplerParamsOffset = samplerOffset;
        }

        static uint32_t setKernelData(void *reflectionSurface, uint32_t offset,
                                      std::vector<IGIL_KernelCurbeParams> &curbeParamsIn,
                                      uint64_t tokenMaskIn, size_t maxConstantBufferSize,
                                      size_t samplerCount, const KernelInfo &kernelInfo,
                                      const HardwareInfo &hwInfo);

        static void setKernelAddressData(void *reflectionSurface, uint32_t offset,
                                         uint32_t kernelDataOffset, uint32_t samplerHeapOffset,
                                         uint32_t constantBufferOffset, uint32_t samplerParamsOffset,
                                         uint32_t sshTokensOffset, uint32_t btOffset,
                                         const KernelInfo &kernelInfo, const HardwareInfo &hwInfo);

        static void getCurbeParams(std::vector<IGIL_KernelCurbeParams> &curbeParamsOut,
                                   uint64_t &tokenMaskOut, uint32_t &firstSSHTokenIndex,
                                   const KernelInfo &kernelInfo, const HardwareInfo &hwInfo);

        static bool compareFunction(IGIL_KernelCurbeParams argFirst, IGIL_KernelCurbeParams argSecond) {
            if (argFirst.m_parameterType == argSecond.m_parameterType) {
                if (argFirst.m_parameterType == iOpenCL::DATA_PARAMETER_LOCAL_WORK_SIZE) {
                    return argFirst.m_patchOffset < argSecond.m_patchOffset;
                } else {
                    return argFirst.m_sourceOffset < argSecond.m_sourceOffset;
                }
            } else {
                return argFirst.m_parameterType < argSecond.m_parameterType;
            }
        }

        static void setKernelAddressDataBtOffset(void *reflectionSurface, uint32_t blockID, uint32_t btOffset);

        static void setParentImageParams(void *reflectionSurface, std::vector<Kernel::SimpleKernelArgInfo> &parentArguments, const KernelInfo &parentKernelInfo);
        static void setParentSamplerParams(void *reflectionSurface, std::vector<Kernel::SimpleKernelArgInfo> &parentArguments, const KernelInfo &parentKernelInfo);

        template <bool mockable = false>
        static void patchBlocksCurbe(void *reflectionSurface, uint32_t blockID,
                                     uint64_t defaultDeviceQueueCurbeOffset, uint32_t patchSizeDefaultQueue, uint64_t defaultDeviceQueueGpuAddress,
                                     uint64_t eventPoolCurbeOffset, uint32_t patchSizeEventPool, uint64_t eventPoolGpuAddress,
                                     uint64_t deviceQueueCurbeOffset, uint32_t patchSizeDeviceQueue, uint64_t deviceQueueGpuAddress,
                                     uint64_t printfBufferOffset, uint32_t printfBufferSize, uint64_t printfBufferGpuAddress,
                                     uint64_t privateSurfaceOffset, uint32_t privateSurfaceSize, uint64_t privateSurfaceGpuAddress);

        static void patchBlocksCurbeWithConstantValues(void *reflectionSurface, uint32_t blockID,
                                                       uint64_t globalMemoryCurbeOffset, uint32_t globalMemoryPatchSize, uint64_t globalMemoryGpuAddress,
                                                       uint64_t constantMemoryCurbeOffset, uint32_t constantMemoryPatchSize, uint64_t constantMemoryGpuAddress,
                                                       uint64_t privateMemoryCurbeOffset, uint32_t privateMemoryPatchSize, uint64_t privateMemoryGpuAddress);
    };

    void
    makeArgsResident(CommandStreamReceiver &commandStreamReceiver);

    void *patchBufferOffset(const KernelArgInfo &argInfo, void *svmPtr, GraphicsAllocation *svmAlloc);

    // Sets-up both crossThreadData and ssh for given implicit (private/constant, etc.) allocation
    template <typename PatchTokenT>
    void patchWithImplicitSurface(void *ptrToPatchInCrossThreadData, GraphicsAllocation &allocation, const PatchTokenT &patch);

    void getParentObjectCounts(ObjectCounts &objectCount);
    Kernel(Program *programArg, const KernelInfo &kernelInfoArg, const ClDevice &deviceArg, bool schedulerKernel = false);
    void provideInitializationHints();

    void patchBlocksCurbeWithConstantValues();

    void resolveArgs();

    void reconfigureKernel();

    void addAllocationToCacheFlushVector(uint32_t argIndex, GraphicsAllocation *argAllocation);
    bool allocationForCacheFlush(GraphicsAllocation *argAllocation) const;
    Program *program;
    Context *context;
    const ClDevice &device;
    const KernelInfo &kernelInfo;

    std::vector<SimpleKernelArgInfo> kernelArguments;
    std::vector<KernelArgHandler> kernelArgHandlers;
    std::vector<GraphicsAllocation *> kernelSvmGfxAllocations;
    std::vector<GraphicsAllocation *> kernelUnifiedMemoryGfxAllocations;

    AuxTranslationDirection auxTranslationDirection = AuxTranslationDirection::None;

    size_t numberOfBindingTableStates;
    size_t localBindingTableOffset;
    std::unique_ptr<char[]> pSshLocal;
    uint32_t sshLocalSize;

    char *crossThreadData;
    uint32_t crossThreadDataSize;

    GraphicsAllocation *privateSurface;
    uint64_t privateSurfaceSize;

    GraphicsAllocation *kernelReflectionSurface;

    bool usingSharedObjArgs;
    bool usingImagesOnly = false;
    bool auxTranslationRequired = false;
    bool containsStatelessWrites = true;
    uint32_t patchedArgumentsNum = 0;
    uint32_t startOffset = 0;
    uint32_t statelessUncacheableArgsCount = 0;
    uint32_t threadArbitrationPolicy = ThreadArbitrationPolicy::NotPresent;
    KernelExecutionType executionType = KernelExecutionType::Default;

    std::vector<PatchInfoData> patchInfoDataList;
    std::unique_ptr<ImageTransformer> imageTransformer;

    bool specialPipelineSelectMode = false;
    bool svmAllocationsRequireCacheFlush = false;
    std::vector<GraphicsAllocation *> kernelArgRequiresCacheFlush;
    UnifiedMemoryControls unifiedMemoryControls;
    bool isUnifiedMemorySyncRequired = true;
    bool debugEnabled = false;
    uint32_t additionalKernelExecInfo = AdditionalKernelExecInfo::NotSet;
};
} // namespace NEO