File: mem_obj.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (413 lines) | stat: -rw-r--r-- 15,099 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "opencl/source/mem_obj/mem_obj.h"

#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/gmm_helper/gmm.h"
#include "shared/source/gmm_helper/resource_info.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/bit_helpers.h"
#include "shared/source/helpers/get_info.h"
#include "shared/source/memory_manager/deferred_deleter.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/os_interface/os_context.h"

#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/command_queue/command_queue.h"
#include "opencl/source/context/context.h"
#include "opencl/source/helpers/get_info_status_mapper.h"

#include <algorithm>

namespace NEO {

MemObj::MemObj(Context *context,
               cl_mem_object_type memObjectType,
               const MemoryProperties &memoryProperties,
               cl_mem_flags flags,
               cl_mem_flags_intel flagsIntel,
               size_t size,
               void *memoryStorage,
               void *hostPtr,
               MultiGraphicsAllocation multiGraphicsAllocation,
               bool zeroCopy,
               bool isHostPtrSVM,
               bool isObjectRedescribed)
    : context(context), memObjectType(memObjectType), memoryProperties(memoryProperties), flags(flags), flagsIntel(flagsIntel), size(size),
      memoryStorage(memoryStorage), hostPtr(hostPtr),
      isZeroCopy(zeroCopy), isHostPtrSVM(isHostPtrSVM), isObjectRedescribed(isObjectRedescribed),
      multiGraphicsAllocation(std::move(multiGraphicsAllocation)),
      mapAllocations(static_cast<uint32_t>(this->multiGraphicsAllocation.getGraphicsAllocations().size() - 1)) {
    if (context) {
        context->incRefInternal();
        memoryManager = context->getMemoryManager();
        auto device = context->getDevice(0);
        executionEnvironment = device->getExecutionEnvironment();
    }
}

MemObj::~MemObj() {
    if (!context) {
        return;
    }

    bool needWait = false;

    if (allocatedMapPtr != nullptr) {
        needWait = true;
    }
    if (mapOperationsHandler.size() > 0 && !getCpuAddressForMapping()) {
        needWait = true;
    }
    if (!destructorCallbacks.empty()) {
        needWait = true;
    }

    if (!isObjectRedescribed) {
        if (peekSharingHandler()) {
            peekSharingHandler()->releaseReusedGraphicsAllocation();
        }

        for (auto graphicsAllocation : multiGraphicsAllocation.getGraphicsAllocations()) {
            auto rootDeviceIndex = graphicsAllocation ? graphicsAllocation->getRootDeviceIndex() : 0;
            bool doAsyncDestructions = DebugManager.flags.EnableAsyncDestroyAllocations.get();
            if (graphicsAllocation && !associatedMemObject && !isHostPtrSVM && graphicsAllocation->peekReuseCount() == 0) {
                memoryManager->removeAllocationFromHostPtrManager(graphicsAllocation);
                if (!doAsyncDestructions) {
                    needWait = true;
                }
                if (needWait && graphicsAllocation->isUsed()) {
                    memoryManager->waitForEnginesCompletion(*graphicsAllocation);
                }
                destroyGraphicsAllocation(graphicsAllocation, doAsyncDestructions);
                graphicsAllocation = nullptr;
            }
            if (!associatedMemObject) {
                releaseMapAllocation(rootDeviceIndex, doAsyncDestructions);
            }
            if (mcsAllocation) {
                destroyGraphicsAllocation(mcsAllocation, false);
            }
            if (graphicsAllocation && associatedMemObject) {
                if (associatedMemObject->getGraphicsAllocation(graphicsAllocation->getRootDeviceIndex()) != graphicsAllocation) {
                    destroyGraphicsAllocation(graphicsAllocation, false);
                }
                associatedMemObject->decRefInternal();
            }
        }
        if (!associatedMemObject) {
            releaseAllocatedMapPtr();
        }
    }
    for (auto callback : destructorCallbacks) {
        callback->invoke(this);
        delete callback;
    }

    context->decRefInternal();
}

cl_int MemObj::getMemObjectInfo(cl_mem_info paramName,
                                size_t paramValueSize,
                                void *paramValue,
                                size_t *paramValueSizeRet) {
    cl_int retVal;
    size_t srcParamSize = GetInfo::invalidSourceSize;
    void *srcParam = nullptr;
    cl_bool usesSVMPointer;
    cl_uint refCnt = 0;
    cl_uint mapCount = 0;
    cl_mem clAssociatedMemObject = static_cast<cl_mem>(this->associatedMemObject);
    cl_context ctx = nullptr;
    uint64_t internalHandle = 0llu;
    auto allocation = getMultiGraphicsAllocation().getDefaultGraphicsAllocation();
    cl_bool usesCompression = allocation->getAllocationType() == GraphicsAllocation::AllocationType::BUFFER_COMPRESSED;

    switch (paramName) {
    case CL_MEM_TYPE:
        srcParamSize = sizeof(memObjectType);
        srcParam = &memObjectType;
        break;

    case CL_MEM_FLAGS:
        srcParamSize = sizeof(flags);
        srcParam = &flags;
        break;

    case CL_MEM_SIZE:
        srcParamSize = sizeof(size);
        srcParam = &size;
        break;

    case CL_MEM_HOST_PTR:
        srcParamSize = sizeof(hostPtr);
        srcParam = &hostPtr;
        break;

    case CL_MEM_CONTEXT:
        srcParamSize = sizeof(context);
        ctx = context;
        srcParam = &ctx;
        break;

    case CL_MEM_USES_SVM_POINTER:
        usesSVMPointer = isHostPtrSVM && isValueSet(flags, CL_MEM_USE_HOST_PTR);
        srcParamSize = sizeof(cl_bool);
        srcParam = &usesSVMPointer;
        break;

    case CL_MEM_OFFSET:
        srcParamSize = sizeof(offset);
        srcParam = &offset;
        break;

    case CL_MEM_ASSOCIATED_MEMOBJECT:
        srcParamSize = sizeof(clAssociatedMemObject);
        srcParam = &clAssociatedMemObject;
        break;

    case CL_MEM_MAP_COUNT:
        srcParamSize = sizeof(mapCount);
        mapCount = static_cast<cl_uint>(mapOperationsHandler.size());
        srcParam = &mapCount;
        break;

    case CL_MEM_REFERENCE_COUNT:
        refCnt = static_cast<cl_uint>(this->getReference());
        srcParamSize = sizeof(refCnt);
        srcParam = &refCnt;
        break;

    case CL_MEM_ALLOCATION_HANDLE_INTEL:
        internalHandle = multiGraphicsAllocation.getDefaultGraphicsAllocation()->peekInternalHandle(this->memoryManager);
        srcParamSize = sizeof(internalHandle);
        srcParam = &internalHandle;
        break;

    case CL_MEM_USES_COMPRESSION_INTEL:
        srcParam = &usesCompression;
        srcParamSize = sizeof(cl_bool);
        break;

    case CL_MEM_PROPERTIES:
        srcParamSize = propertiesVector.size() * sizeof(cl_mem_properties);
        srcParam = propertiesVector.data();
        break;

    default:
        getOsSpecificMemObjectInfo(paramName, &srcParamSize, &srcParam);
        break;
    }

    auto getInfoStatus = GetInfo::getInfo(paramValue, paramValueSize, srcParam, srcParamSize);
    retVal = changeGetInfoStatusToCLResultType(getInfoStatus);
    GetInfo::setParamValueReturnSize(paramValueSizeRet, srcParamSize, getInfoStatus);

    return retVal;
}

cl_int MemObj::setDestructorCallback(void(CL_CALLBACK *funcNotify)(cl_mem, void *),
                                     void *userData) {
    auto cb = new MemObjDestructorCallback(funcNotify, userData);

    std::unique_lock<std::mutex> theLock(mtx);
    destructorCallbacks.push_front(cb);
    return CL_SUCCESS;
}

void *MemObj::getCpuAddress() const {
    return memoryStorage;
}

void *MemObj::getHostPtr() const {
    return hostPtr;
}

size_t MemObj::getSize() const {
    return size;
}

void MemObj::setAllocatedMapPtr(void *allocatedMapPtr) {
    this->allocatedMapPtr = allocatedMapPtr;
}

bool MemObj::isMemObjZeroCopy() const {
    return isZeroCopy;
}

bool MemObj::isMemObjWithHostPtrSVM() const {
    return isHostPtrSVM;
}

bool MemObj::isMemObjUncacheable() const {
    return isValueSet(flagsIntel, CL_MEM_LOCALLY_UNCACHED_RESOURCE);
}

bool MemObj::isMemObjUncacheableForSurfaceState() const {
    return isAnyBitSet(flagsIntel, CL_MEM_LOCALLY_UNCACHED_SURFACE_STATE_RESOURCE | CL_MEM_LOCALLY_UNCACHED_RESOURCE);
}

GraphicsAllocation *MemObj::getGraphicsAllocation(uint32_t rootDeviceIndex) const {
    return multiGraphicsAllocation.getGraphicsAllocation(rootDeviceIndex);
}

void MemObj::checkUsageAndReleaseOldAllocation(uint32_t rootDeviceIndex) {
    auto graphicsAllocation = getGraphicsAllocation(rootDeviceIndex);
    if (graphicsAllocation != nullptr && (peekSharingHandler() == nullptr || graphicsAllocation->peekReuseCount() == 0)) {
        memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(graphicsAllocation);
    }
}

void MemObj::resetGraphicsAllocation(GraphicsAllocation *newGraphicsAllocation) {
    TakeOwnershipWrapper<MemObj> lock(*this);
    checkUsageAndReleaseOldAllocation(newGraphicsAllocation->getRootDeviceIndex());
    multiGraphicsAllocation.addAllocation(newGraphicsAllocation);
}

void MemObj::removeGraphicsAllocation(uint32_t rootDeviceIndex) {
    TakeOwnershipWrapper<MemObj> lock(*this);
    checkUsageAndReleaseOldAllocation(rootDeviceIndex);
    multiGraphicsAllocation.removeAllocation(rootDeviceIndex);
}

bool MemObj::readMemObjFlagsInvalid() {
    return isValueSet(flags, CL_MEM_HOST_WRITE_ONLY) || isValueSet(flags, CL_MEM_HOST_NO_ACCESS);
}

bool MemObj::writeMemObjFlagsInvalid() {
    return isValueSet(flags, CL_MEM_HOST_READ_ONLY) || isValueSet(flags, CL_MEM_HOST_NO_ACCESS);
}

bool MemObj::mapMemObjFlagsInvalid(cl_map_flags mapFlags) {
    return (writeMemObjFlagsInvalid() && (mapFlags & CL_MAP_WRITE)) ||
           (readMemObjFlagsInvalid() && (mapFlags & CL_MAP_READ));
}

void MemObj::setHostPtrMinSize(size_t size) {
    hostPtrMinSize = size;
}

void *MemObj::getCpuAddressForMapping() {
    void *ptrToReturn = nullptr;
    if (isValueSet(flags, CL_MEM_USE_HOST_PTR)) {
        ptrToReturn = this->hostPtr;
    } else {
        ptrToReturn = this->memoryStorage;
    }
    return ptrToReturn;
}
void *MemObj::getCpuAddressForMemoryTransfer() {
    void *ptrToReturn = nullptr;
    if (isValueSet(flags, CL_MEM_USE_HOST_PTR) && this->isMemObjZeroCopy()) {
        ptrToReturn = this->hostPtr;
    } else {
        ptrToReturn = this->memoryStorage;
    }
    return ptrToReturn;
}
void MemObj::releaseAllocatedMapPtr() {
    if (allocatedMapPtr) {
        DEBUG_BREAK_IF(isValueSet(flags, CL_MEM_USE_HOST_PTR));
        memoryManager->freeSystemMemory(allocatedMapPtr);
    }
    allocatedMapPtr = nullptr;
}

void MemObj::releaseMapAllocation(uint32_t rootDeviceIndex, bool asyncDestroy) {
    auto mapAllocation = mapAllocations.getGraphicsAllocation(rootDeviceIndex);
    if (mapAllocation && !isHostPtrSVM) {
        if (asyncDestroy && !isValueSet(flags, CL_MEM_USE_HOST_PTR)) {
            destroyGraphicsAllocation(mapAllocation, true);
        } else {
            if (mapAllocation->isUsed()) {
                memoryManager->waitForEnginesCompletion(*mapAllocation);
            }
            destroyGraphicsAllocation(mapAllocation, false);
        }
    }
}

void MemObj::destroyGraphicsAllocation(GraphicsAllocation *allocation, bool asyncDestroy) {
    if (asyncDestroy) {
        memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(allocation);
    } else {
        memoryManager->freeGraphicsMemory(allocation);
    }
}

bool MemObj::checkIfMemoryTransferIsRequired(size_t offsetInMemObject, size_t offsetInHostPtr, const void *hostPtr, cl_command_type cmdType) {
    auto bufferStorage = ptrOffset(this->getCpuAddressForMemoryTransfer(), offsetInMemObject);
    auto hostStorage = ptrOffset(hostPtr, offsetInHostPtr);
    auto isMemTransferNeeded = !((bufferStorage == hostStorage) &&
                                 (cmdType == CL_COMMAND_WRITE_BUFFER || cmdType == CL_COMMAND_READ_BUFFER ||
                                  cmdType == CL_COMMAND_WRITE_BUFFER_RECT || cmdType == CL_COMMAND_READ_BUFFER_RECT ||
                                  cmdType == CL_COMMAND_WRITE_IMAGE || cmdType == CL_COMMAND_READ_IMAGE));
    return isMemTransferNeeded;
}

void *MemObj::getBasePtrForMap(uint32_t rootDeviceIndex) {
    if (associatedMemObject) {
        return associatedMemObject->getBasePtrForMap(rootDeviceIndex);
    }
    if (getFlags() & CL_MEM_USE_HOST_PTR) {
        return getHostPtr();
    } else {
        TakeOwnershipWrapper<MemObj> memObjOwnership(*this);
        if (getMapAllocation(rootDeviceIndex)) {
            return getMapAllocation(rootDeviceIndex)->getUnderlyingBuffer();
        } else {
            auto memory = getAllocatedMapPtr();
            if (!memory) {
                memory = memoryManager->allocateSystemMemory(getSize(), MemoryConstants::pageSize);
                setAllocatedMapPtr(memory);
            }
            AllocationProperties properties{rootDeviceIndex,
                                            false, // allocateMemory
                                            getSize(), GraphicsAllocation::AllocationType::MAP_ALLOCATION,
                                            false, //isMultiStorageAllocation
                                            context->getDeviceBitfieldForAllocation(rootDeviceIndex)};

            auto allocation = memoryManager->allocateGraphicsMemoryWithProperties(properties, memory);
            setMapAllocation(allocation);
            return getAllocatedMapPtr();
        }
    }
}

bool MemObj::addMappedPtr(void *ptr, size_t ptrLength, cl_map_flags &mapFlags,
                          MemObjSizeArray &size, MemObjOffsetArray &offset,
                          uint32_t mipLevel) {
    return mapOperationsHandler.add(ptr, ptrLength, mapFlags, size, offset,
                                    mipLevel);
}

bool MemObj::isTiledAllocation() const {
    auto graphicsAllocation = multiGraphicsAllocation.getDefaultGraphicsAllocation();
    auto gmm = graphicsAllocation->getDefaultGmm();
    return gmm && (gmm->gmmResourceInfo->getTileModeSurfaceState() != 0);
}

bool MemObj::mappingOnCpuAllowed() const {
    auto graphicsAllocation = multiGraphicsAllocation.getDefaultGraphicsAllocation();
    return !isTiledAllocation() && !peekSharingHandler() && !isMipMapped(this) && !DebugManager.flags.DisableZeroCopyForBuffers.get() &&
           !(graphicsAllocation->getDefaultGmm() && graphicsAllocation->getDefaultGmm()->isRenderCompressed) &&
           MemoryPool::isSystemMemoryPool(graphicsAllocation->getMemoryPool());
}

void MemObj::storeProperties(const cl_mem_properties *properties) {
    if (properties) {
        for (size_t i = 0; properties[i] != 0; i += 2) {
            propertiesVector.push_back(properties[i]);
            propertiesVector.push_back(properties[i + 1]);
        }
        propertiesVector.push_back(0);
    }
}

} // namespace NEO