1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/program/program_info.h"
#include "shared/source/program/program_initialization.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/context/context.h"
#include "opencl/source/gtpin/gtpin_notify.h"
#include "opencl/source/program/kernel_info.h"
#include "opencl/source/program/program.h"
#include "program_debug_data.h"
#include <algorithm>
using namespace iOpenCL;
namespace NEO {
extern bool familyEnabled[];
const KernelInfo *Program::getKernelInfo(
const char *kernelName) const {
if (kernelName == nullptr) {
return nullptr;
}
auto it = std::find_if(kernelInfoArray.begin(), kernelInfoArray.end(),
[=](const KernelInfo *kInfo) { return (0 == strcmp(kInfo->kernelDescriptor.kernelMetadata.kernelName.c_str(), kernelName)); });
return (it != kernelInfoArray.end()) ? *it : nullptr;
}
size_t Program::getNumKernels() const {
return kernelInfoArray.size();
}
const KernelInfo *Program::getKernelInfo(size_t ordinal) const {
DEBUG_BREAK_IF(ordinal >= kernelInfoArray.size());
return kernelInfoArray[ordinal];
}
cl_int Program::linkBinary(Device *pDevice, const void *constantsInitData, const void *variablesInitData) {
auto linkerInput = getLinkerInput(pDevice->getRootDeviceIndex());
if (linkerInput == nullptr) {
return CL_SUCCESS;
}
auto rootDeviceIndex = pDevice->getRootDeviceIndex();
Linker linker(*linkerInput);
Linker::SegmentInfo globals;
Linker::SegmentInfo constants;
Linker::SegmentInfo exportedFunctions;
GraphicsAllocation *globalsForPatching = getGlobalSurface(rootDeviceIndex);
GraphicsAllocation *constantsForPatching = getConstantSurface(rootDeviceIndex);
if (globalsForPatching != nullptr) {
globals.gpuAddress = static_cast<uintptr_t>(globalsForPatching->getGpuAddress());
globals.segmentSize = globalsForPatching->getUnderlyingBufferSize();
}
if (constantsForPatching != nullptr) {
constants.gpuAddress = static_cast<uintptr_t>(constantsForPatching->getGpuAddress());
constants.segmentSize = constantsForPatching->getUnderlyingBufferSize();
}
if (linkerInput->getExportedFunctionsSegmentId() >= 0) {
// Exported functions reside in instruction heap of one of kernels
auto exportedFunctionHeapId = linkerInput->getExportedFunctionsSegmentId();
buildInfos[rootDeviceIndex].exportedFunctionsSurface = this->kernelInfoArray[exportedFunctionHeapId]->getGraphicsAllocation();
exportedFunctions.gpuAddress = static_cast<uintptr_t>(buildInfos[rootDeviceIndex].exportedFunctionsSurface->getGpuAddressToPatch());
exportedFunctions.segmentSize = buildInfos[rootDeviceIndex].exportedFunctionsSurface->getUnderlyingBufferSize();
}
Linker::PatchableSegments isaSegmentsForPatching;
std::vector<std::vector<char>> patchedIsaTempStorage;
if (linkerInput->getTraits().requiresPatchingOfInstructionSegments) {
patchedIsaTempStorage.reserve(this->kernelInfoArray.size());
for (const auto &kernelInfo : this->kernelInfoArray) {
auto &kernHeapInfo = kernelInfo->heapInfo;
const char *originalIsa = reinterpret_cast<const char *>(kernHeapInfo.pKernelHeap);
patchedIsaTempStorage.push_back(std::vector<char>(originalIsa, originalIsa + kernHeapInfo.KernelHeapSize));
isaSegmentsForPatching.push_back(Linker::PatchableSegment{patchedIsaTempStorage.rbegin()->data(), kernHeapInfo.KernelHeapSize});
}
}
Linker::UnresolvedExternals unresolvedExternalsInfo;
bool linkSuccess = LinkingStatus::LinkedFully == linker.link(globals, constants, exportedFunctions,
globalsForPatching, constantsForPatching,
isaSegmentsForPatching, unresolvedExternalsInfo,
pDevice, constantsInitData, variablesInitData);
setSymbols(pDevice->getRootDeviceIndex(), linker.extractRelocatedSymbols());
if (false == linkSuccess) {
std::vector<std::string> kernelNames;
for (const auto &kernelInfo : this->kernelInfoArray) {
kernelNames.push_back("kernel : " + kernelInfo->kernelDescriptor.kernelMetadata.kernelName);
}
auto error = constructLinkerErrorMessage(unresolvedExternalsInfo, kernelNames);
updateBuildLog(pDevice->getRootDeviceIndex(), error.c_str(), error.size());
return CL_INVALID_BINARY;
} else if (linkerInput->getTraits().requiresPatchingOfInstructionSegments) {
for (const auto &kernelInfo : this->kernelInfoArray) {
if (nullptr == kernelInfo->getGraphicsAllocation()) {
continue;
}
auto &kernHeapInfo = kernelInfo->heapInfo;
auto segmentId = &kernelInfo - &this->kernelInfoArray[0];
this->pDevice->getMemoryManager()->copyMemoryToAllocation(kernelInfo->getGraphicsAllocation(), 0,
isaSegmentsForPatching[segmentId].hostPointer,
kernHeapInfo.KernelHeapSize);
}
}
DBG_LOG(PrintRelocations, NEO::constructRelocationsDebugMessage(this->getSymbols(pDevice->getRootDeviceIndex())));
return CL_SUCCESS;
}
cl_int Program::processGenBinary(uint32_t rootDeviceIndex) {
if (nullptr == this->buildInfos[rootDeviceIndex].unpackedDeviceBinary) {
return CL_INVALID_BINARY;
}
cleanCurrentKernelInfo();
for (auto &buildInfo : buildInfos) {
if (buildInfo.constantSurface || buildInfo.globalSurface) {
pDevice->getMemoryManager()->freeGraphicsMemory(buildInfo.constantSurface);
pDevice->getMemoryManager()->freeGraphicsMemory(buildInfo.globalSurface);
buildInfo.constantSurface = nullptr;
buildInfo.globalSurface = nullptr;
}
}
ProgramInfo programInfo;
auto blob = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize);
SingleDeviceBinary binary = {};
binary.deviceBinary = blob;
std::string decodeErrors;
std::string decodeWarnings;
DecodeError decodeError;
DeviceBinaryFormat singleDeviceBinaryFormat;
std::tie(decodeError, singleDeviceBinaryFormat) = NEO::decodeSingleDeviceBinary(programInfo, binary, decodeErrors, decodeWarnings);
if (decodeWarnings.empty() == false) {
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeWarnings.c_str());
}
if (DecodeError::Success != decodeError) {
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeErrors.c_str());
return CL_INVALID_BINARY;
}
return this->processProgramInfo(programInfo);
}
cl_int Program::processProgramInfo(ProgramInfo &src) {
size_t slmNeeded = getMaxInlineSlmNeeded(src);
size_t slmAvailable = 0U;
NEO::DeviceInfoKernelPayloadConstants deviceInfoConstants;
LinkerInput *linkerInput = nullptr;
slmAvailable = static_cast<size_t>(this->pDevice->getDeviceInfo().localMemSize);
deviceInfoConstants.maxWorkGroupSize = (uint32_t)this->pDevice->getDeviceInfo().maxWorkGroupSize;
deviceInfoConstants.computeUnitsUsedForScratch = this->pDevice->getDeviceInfo().computeUnitsUsedForScratch;
deviceInfoConstants.slmWindowSize = (uint32_t)this->pDevice->getDeviceInfo().localMemSize;
if (requiresLocalMemoryWindowVA(src)) {
deviceInfoConstants.slmWindow = this->executionEnvironment.memoryManager->getReservedMemory(MemoryConstants::slmWindowSize, MemoryConstants::slmWindowAlignment);
}
linkerInput = src.linkerInput.get();
setLinkerInput(pDevice->getRootDeviceIndex(), std::move(src.linkerInput));
if (slmNeeded > slmAvailable) {
return CL_OUT_OF_RESOURCES;
}
this->kernelInfoArray = std::move(src.kernelInfos);
auto svmAllocsManager = context ? context->getSVMAllocsManager() : nullptr;
auto rootDeviceIndex = pDevice->getRootDeviceIndex();
if (src.globalConstants.size != 0) {
UNRECOVERABLE_IF(nullptr == pDevice);
buildInfos[rootDeviceIndex].constantSurface = allocateGlobalsSurface(svmAllocsManager, *pDevice, src.globalConstants.size, true, linkerInput, src.globalConstants.initData);
}
buildInfos[rootDeviceIndex].globalVarTotalSize = src.globalVariables.size;
if (src.globalVariables.size != 0) {
buildInfos[rootDeviceIndex].globalSurface = allocateGlobalsSurface(svmAllocsManager, *pDevice, src.globalVariables.size, false, linkerInput, src.globalVariables.initData);
if (pDevice->getSpecializedDevice<ClDevice>()->areOcl21FeaturesEnabled() == false) {
buildInfos[rootDeviceIndex].globalVarTotalSize = 0u;
}
}
for (auto &kernelInfo : this->kernelInfoArray) {
cl_int retVal = CL_SUCCESS;
if (kernelInfo->heapInfo.KernelHeapSize) {
retVal = kernelInfo->createKernelAllocation(*this->pDevice) ? CL_SUCCESS : CL_OUT_OF_HOST_MEMORY;
}
if (retVal != CL_SUCCESS) {
return retVal;
}
if (kernelInfo->hasDeviceEnqueue()) {
parentKernelInfoArray.push_back(kernelInfo);
}
if (kernelInfo->requiresSubgroupIndependentForwardProgress()) {
subgroupKernelInfoArray.push_back(kernelInfo);
}
kernelInfo->apply(deviceInfoConstants);
}
return linkBinary(this->pDevice, src.globalConstants.initData, src.globalVariables.initData);
}
void Program::processDebugData() {
if (debugData != nullptr) {
SProgramDebugDataHeaderIGC *programDebugHeader = reinterpret_cast<SProgramDebugDataHeaderIGC *>(debugData.get());
DEBUG_BREAK_IF(programDebugHeader->NumberOfKernels != kernelInfoArray.size());
const SKernelDebugDataHeaderIGC *kernelDebugHeader = reinterpret_cast<SKernelDebugDataHeaderIGC *>(ptrOffset(programDebugHeader, sizeof(SProgramDebugDataHeaderIGC)));
const char *kernelName = nullptr;
const char *kernelDebugData = nullptr;
for (uint32_t i = 0; i < programDebugHeader->NumberOfKernels; i++) {
kernelName = reinterpret_cast<const char *>(ptrOffset(kernelDebugHeader, sizeof(SKernelDebugDataHeaderIGC)));
auto kernelInfo = kernelInfoArray[i];
UNRECOVERABLE_IF(kernelInfo->kernelDescriptor.kernelMetadata.kernelName.compare(0, kernelInfo->kernelDescriptor.kernelMetadata.kernelName.size(), kernelName) != 0);
kernelDebugData = ptrOffset(kernelName, kernelDebugHeader->KernelNameSize);
kernelInfo->debugData.vIsa = kernelDebugData;
kernelInfo->debugData.genIsa = ptrOffset(kernelDebugData, kernelDebugHeader->SizeVisaDbgInBytes);
kernelInfo->debugData.vIsaSize = kernelDebugHeader->SizeVisaDbgInBytes;
kernelInfo->debugData.genIsaSize = kernelDebugHeader->SizeGenIsaDbgInBytes;
kernelDebugData = ptrOffset(kernelDebugData, kernelDebugHeader->SizeVisaDbgInBytes + kernelDebugHeader->SizeGenIsaDbgInBytes);
kernelDebugHeader = reinterpret_cast<const SKernelDebugDataHeaderIGC *>(kernelDebugData);
}
}
}
} // namespace NEO
|