1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "program.h"
#include "shared/source/command_stream/command_stream_receiver.h"
#include "shared/source/compiler_interface/compiler_interface.h"
#include "shared/source/compiler_interface/intermediate_representations.h"
#include "shared/source/device_binary_format/device_binary_formats.h"
#include "shared/source/device_binary_format/elf/elf_encoder.h"
#include "shared/source/device_binary_format/elf/ocl_elf.h"
#include "shared/source/helpers/api_specific_config.h"
#include "shared/source/helpers/compiler_options_parser.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/kernel_helpers.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/os_interface/os_context.h"
#include "opencl/source/cl_device/cl_device.h"
#include "opencl/source/context/context.h"
#include "opencl/source/platform/platform.h"
#include "opencl/source/program/block_kernel_manager.h"
#include "opencl/source/program/kernel_info.h"
#include "compiler_options.h"
#include <sstream>
namespace NEO {
Program::Program(Context *context, bool isBuiltIn, const ClDeviceVector &clDevicesIn) : executionEnvironment(*clDevicesIn[0]->getExecutionEnvironment()),
context(context),
pDevice(&clDevicesIn[0]->getDevice()),
clDevices(clDevicesIn),
isBuiltIn(isBuiltIn) {
if (this->context && !this->isBuiltIn) {
this->context->incRefInternal();
}
blockKernelManager = new BlockKernelManager();
ClDevice *pClDevice = castToObject<ClDevice>(pDevice->getSpecializedDevice<ClDevice>());
numDevices = static_cast<uint32_t>(clDevicesIn.size());
bool force32BitAddressess = false;
uint32_t maxRootDeviceIndex = 0;
for (const auto &device : clDevicesIn) {
if (device->getRootDeviceIndex() > maxRootDeviceIndex) {
maxRootDeviceIndex = device->getRootDeviceIndex();
}
}
buildInfos.resize(maxRootDeviceIndex + 1);
auto enabledClVersion = pClDevice->getEnabledClVersion();
if (enabledClVersion == 30) {
internalOptions = "-ocl-version=300 ";
} else if (enabledClVersion == 21) {
internalOptions = "-ocl-version=210 ";
} else {
internalOptions = "-ocl-version=120 ";
}
force32BitAddressess = pClDevice->getSharedDeviceInfo().force32BitAddressess;
if (force32BitAddressess && !isBuiltIn) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::arch32bit);
}
if ((isBuiltIn && is32bit) || pClDevice->areSharedSystemAllocationsAllowed() ||
DebugManager.flags.DisableStatelessToStatefulOptimization.get()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::greaterThan4gbBuffersRequired);
}
if (ApiSpecificConfig::getBindlessConfiguration()) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::bindlessBuffers);
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::bindlessImages);
}
kernelDebugEnabled = pClDevice->isDebuggerActive();
auto enableStatelessToStatefullWithOffset = pClDevice->getHardwareCapabilities().isStatelesToStatefullWithOffsetSupported;
if (DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != -1) {
enableStatelessToStatefullWithOffset = DebugManager.flags.EnableStatelessToStatefulBufferOffsetOpt.get() != 0;
}
if (enableStatelessToStatefullWithOffset) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::hasBufferOffsetArg);
}
auto &hwHelper = HwHelper::get(pClDevice->getHardwareInfo().platform.eRenderCoreFamily);
if (hwHelper.isForceEmuInt32DivRemSPWARequired(pClDevice->getHardwareInfo())) {
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::forceEmuInt32DivRemSP);
}
CompilerOptions::concatenateAppend(internalOptions, CompilerOptions::preserveVec3Type);
}
Program::~Program() {
cleanCurrentKernelInfo();
freeBlockResources();
delete blockKernelManager;
for (const auto &buildInfo : buildInfos) {
if (buildInfo.constantSurface) {
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(buildInfo.constantSurface->getGpuAddress())))) {
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(buildInfo.constantSurface->getGpuAddress()));
} else {
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(buildInfo.constantSurface);
}
}
if (buildInfo.globalSurface) {
if ((nullptr != context) && (nullptr != context->getSVMAllocsManager()) && (context->getSVMAllocsManager()->getSVMAlloc(reinterpret_cast<const void *>(buildInfo.globalSurface->getGpuAddress())))) {
context->getSVMAllocsManager()->freeSVMAlloc(reinterpret_cast<void *>(buildInfo.globalSurface->getGpuAddress()));
} else {
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(buildInfo.globalSurface);
}
}
}
if (context && !isBuiltIn) {
context->decRefInternal();
}
}
cl_int Program::createProgramFromBinary(
const void *pBinary,
size_t binarySize, uint32_t rootDeviceIndex) {
cl_int retVal = CL_INVALID_BINARY;
this->irBinary.reset();
this->irBinarySize = 0U;
this->isSpirV = false;
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = 0U;
this->buildInfos[rootDeviceIndex].packedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = 0U;
this->createdFrom = CreatedFrom::BINARY;
ArrayRef<const uint8_t> archive(reinterpret_cast<const uint8_t *>(pBinary), binarySize);
bool isSpirV = NEO::isSpirVBitcode(archive);
if (isSpirV || NEO::isLlvmBitcode(archive)) {
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_INTERMEDIATE;
retVal = processSpirBinary(archive.begin(), archive.size(), isSpirV);
} else if (isAnyDeviceBinaryFormat(archive)) {
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_EXECUTABLE;
this->isCreatedFromBinary = true;
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto productAbbreviation = hardwarePrefix[hwInfo->platform.eProductFamily];
TargetDevice targetDevice = {};
targetDevice.coreFamily = hwInfo->platform.eRenderCoreFamily;
targetDevice.stepping = hwInfo->platform.usRevId;
targetDevice.maxPointerSizeInBytes = sizeof(uintptr_t);
std::string decodeErrors;
std::string decodeWarnings;
auto singleDeviceBinary = unpackSingleDeviceBinary(archive, ConstStringRef(productAbbreviation, strlen(productAbbreviation)), targetDevice,
decodeErrors, decodeWarnings);
if (decodeWarnings.empty() == false) {
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeWarnings.c_str());
}
if (singleDeviceBinary.intermediateRepresentation.empty() && singleDeviceBinary.deviceBinary.empty()) {
retVal = CL_INVALID_BINARY;
PRINT_DEBUG_STRING(DebugManager.flags.PrintDebugMessages.get(), stderr, "%s\n", decodeErrors.c_str());
} else {
retVal = CL_SUCCESS;
this->irBinary = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.intermediateRepresentation.begin()), singleDeviceBinary.intermediateRepresentation.size());
this->irBinarySize = singleDeviceBinary.intermediateRepresentation.size();
this->isSpirV = NEO::isSpirVBitcode(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize));
this->options = singleDeviceBinary.buildOptions.str();
if (false == singleDeviceBinary.debugData.empty()) {
this->debugData = makeCopy(reinterpret_cast<const char *>(singleDeviceBinary.debugData.begin()), singleDeviceBinary.debugData.size());
this->debugDataSize = singleDeviceBinary.debugData.size();
}
if ((false == singleDeviceBinary.deviceBinary.empty()) && (false == DebugManager.flags.RebuildPrecompiledKernels.get())) {
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(singleDeviceBinary.deviceBinary.begin()), singleDeviceBinary.deviceBinary.size());
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = singleDeviceBinary.deviceBinary.size();
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy<char>(reinterpret_cast<const char *>(archive.begin()), archive.size());
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = archive.size();
} else {
this->isCreatedFromBinary = false;
}
switch (singleDeviceBinary.format) {
default:
break;
case DeviceBinaryFormat::OclLibrary:
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_LIBRARY;
break;
case DeviceBinaryFormat::OclCompiledObject:
this->programBinaryType = CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT;
break;
}
}
}
return retVal;
}
cl_int Program::setProgramSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
if (!isSpirV) {
return CL_INVALID_PROGRAM;
}
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!areSpecializationConstantsInitialized) {
auto pCompilerInterface = this->pDevice->getCompilerInterface();
if (nullptr == pCompilerInterface) {
return CL_OUT_OF_HOST_MEMORY;
}
SpecConstantInfo specConstInfo;
auto retVal = pCompilerInterface->getSpecConstantsInfo(this->getDevice(), ArrayRef<const char>(irBinary.get(), irBinarySize), specConstInfo);
if (retVal != TranslationOutput::ErrorCode::Success) {
return CL_INVALID_VALUE;
}
this->specConstantsIds.reset(specConstInfo.idsBuffer.release());
this->specConstantsSizes.reset(specConstInfo.sizesBuffer.release());
areSpecializationConstantsInitialized = true;
}
return updateSpecializationConstant(specId, specSize, specValue);
}
cl_int Program::updateSpecializationConstant(cl_uint specId, size_t specSize, const void *specValue) {
for (uint32_t i = 0; i < specConstantsIds->GetSize<uint32_t>(); i++) {
if (specConstantsIds->GetMemory<uint32_t>()[i] == specId) {
if (specConstantsSizes->GetMemory<uint32_t>()[i] == static_cast<uint32_t>(specSize)) {
uint64_t specConstValue = 0u;
memcpy_s(&specConstValue, sizeof(uint64_t), specValue, specSize);
specConstantsValues[specId] = specConstValue;
return CL_SUCCESS;
} else {
return CL_INVALID_VALUE;
}
}
}
return CL_INVALID_SPEC_ID;
}
cl_int Program::getSource(std::string &binary) const {
cl_int retVal = CL_INVALID_PROGRAM;
binary = {};
if (!sourceCode.empty()) {
binary = sourceCode;
retVal = CL_SUCCESS;
}
return retVal;
}
void Program::updateBuildLog(uint32_t rootDeviceIndex, const char *pErrorString,
size_t errorStringSize) {
if ((pErrorString == nullptr) || (errorStringSize == 0) || (pErrorString[0] == '\0')) {
return;
}
if (pErrorString[errorStringSize - 1] == '\0') {
--errorStringSize;
}
auto ¤tLog = buildInfos[rootDeviceIndex].buildLog;
if (currentLog.empty()) {
currentLog.assign(pErrorString, pErrorString + errorStringSize);
return;
}
currentLog.append("\n");
currentLog.append(pErrorString, pErrorString + errorStringSize);
}
const char *Program::getBuildLog(uint32_t rootDeviceIndex) const {
auto ¤tLog = buildInfos[rootDeviceIndex].buildLog;
return currentLog.c_str();
}
void Program::separateBlockKernels() {
if ((0 == parentKernelInfoArray.size()) && (0 == subgroupKernelInfoArray.size())) {
return;
}
auto allKernelInfos(kernelInfoArray);
kernelInfoArray.clear();
for (auto &i : allKernelInfos) {
auto end = i->kernelDescriptor.kernelMetadata.kernelName.rfind("_dispatch_");
if (end != std::string::npos) {
bool baseKernelFound = false;
std::string baseKernelName(i->kernelDescriptor.kernelMetadata.kernelName, 0, end);
for (auto &j : parentKernelInfoArray) {
if (j->kernelDescriptor.kernelMetadata.kernelName.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
if (!baseKernelFound) {
for (auto &j : subgroupKernelInfoArray) {
if (j->kernelDescriptor.kernelMetadata.kernelName.compare(baseKernelName) == 0) {
baseKernelFound = true;
break;
}
}
}
if (baseKernelFound) {
//Parent or subgroup kernel found -> child kernel
blockKernelManager->addBlockKernelInfo(i);
} else {
kernelInfoArray.push_back(i);
}
} else {
//Regular kernel found
kernelInfoArray.push_back(i);
}
}
allKernelInfos.clear();
}
void Program::allocateBlockPrivateSurfaces(uint32_t rootDeviceIndex) {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
const KernelInfo *info = blockKernelManager->getBlockKernelInfo(i);
if (info->patchInfo.pAllocateStatelessPrivateSurface) {
auto perThreadPrivateMemorySize = info->patchInfo.pAllocateStatelessPrivateSurface->PerThreadPrivateMemorySize;
if (perThreadPrivateMemorySize > 0 && blockKernelManager->getPrivateSurface(i) == nullptr) {
auto privateSize = static_cast<size_t>(KernelHelper::getPrivateSurfaceSize(perThreadPrivateMemorySize, getDevice().getDeviceInfo().computeUnitsUsedForScratch,
info->getMaxSimdSize(), info->patchInfo.pAllocateStatelessPrivateSurface->IsSimtThread));
auto *privateSurface = this->executionEnvironment.memoryManager->allocateGraphicsMemoryWithProperties({rootDeviceIndex, privateSize, GraphicsAllocation::AllocationType::PRIVATE_SURFACE, getDevice().getDeviceBitfield()});
blockKernelManager->pushPrivateSurface(privateSurface, i);
}
}
}
}
void Program::freeBlockResources() {
size_t blockCount = blockKernelManager->getCount();
for (uint32_t i = 0; i < blockCount; i++) {
auto *privateSurface = blockKernelManager->getPrivateSurface(i);
if (privateSurface != nullptr) {
blockKernelManager->pushPrivateSurface(nullptr, i);
this->executionEnvironment.memoryManager->freeGraphicsMemory(privateSurface);
}
auto kernelInfo = blockKernelManager->getBlockKernelInfo(i);
DEBUG_BREAK_IF(!kernelInfo->kernelAllocation);
if (kernelInfo->kernelAllocation) {
this->executionEnvironment.memoryManager->freeGraphicsMemory(kernelInfo->kernelAllocation);
}
}
}
void Program::cleanCurrentKernelInfo() {
for (auto &kernelInfo : kernelInfoArray) {
if (kernelInfo->kernelAllocation) {
//register cache flush in all csrs where kernel allocation was used
for (auto &engine : this->executionEnvironment.memoryManager->getRegisteredEngines()) {
auto contextId = engine.osContext->getContextId();
if (kernelInfo->kernelAllocation->isUsedByOsContext(contextId)) {
engine.commandStreamReceiver->registerInstructionCacheFlush();
}
}
this->executionEnvironment.memoryManager->checkGpuUsageAndDestroyGraphicsAllocations(kernelInfo->kernelAllocation);
}
delete kernelInfo;
}
kernelInfoArray.clear();
}
void Program::updateNonUniformFlag() {
//Look for -cl-std=CL substring and extract value behind which can be 1.2 2.0 2.1 and convert to value
auto pos = options.find(clStdOptionName);
if (pos == std::string::npos) {
programOptionVersion = 12u; //Default is 1.2
} else {
std::stringstream ss{options.c_str() + pos + clStdOptionName.size()};
uint32_t majorV = 0u, minorV = 0u;
char dot = 0u;
ss >> majorV;
ss >> dot;
ss >> minorV;
programOptionVersion = majorV * 10u + minorV;
}
if (programOptionVersion >= 20u && (false == CompilerOptions::contains(options, CompilerOptions::uniformWorkgroupSize))) {
allowNonUniform = true;
}
}
void Program::updateNonUniformFlag(const Program **inputPrograms, size_t numInputPrograms) {
bool allowNonUniform = true;
for (cl_uint i = 0; i < numInputPrograms; i++) {
allowNonUniform = allowNonUniform && inputPrograms[i]->getAllowNonUniform();
}
this->allowNonUniform = allowNonUniform;
}
void Program::replaceDeviceBinary(std::unique_ptr<char[]> newBinary, size_t newBinarySize, uint32_t rootDeviceIndex) {
if (isAnyPackedDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(newBinary.get()), newBinarySize))) {
this->buildInfos[rootDeviceIndex].packedDeviceBinary = std::move(newBinary);
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = newBinarySize;
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = 0U;
if (isAnySingleDeviceBinaryFormat(ArrayRef<const uint8_t>(reinterpret_cast<uint8_t *>(this->buildInfos[rootDeviceIndex].packedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].packedDeviceBinarySize))) {
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = makeCopy(buildInfos[rootDeviceIndex].packedDeviceBinary.get(), buildInfos[rootDeviceIndex].packedDeviceBinarySize);
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = buildInfos[rootDeviceIndex].packedDeviceBinarySize;
}
} else {
this->buildInfos[rootDeviceIndex].packedDeviceBinary.reset();
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = 0U;
this->buildInfos[rootDeviceIndex].unpackedDeviceBinary = std::move(newBinary);
this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize = newBinarySize;
}
}
cl_int Program::packDeviceBinary(uint32_t rootDeviceIndex) {
if (nullptr != buildInfos[rootDeviceIndex].packedDeviceBinary) {
return CL_SUCCESS;
}
auto hwInfo = executionEnvironment.rootDeviceEnvironments[rootDeviceIndex]->getHardwareInfo();
auto gfxCore = hwInfo->platform.eRenderCoreFamily;
auto stepping = hwInfo->platform.usRevId;
if (nullptr != this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()) {
SingleDeviceBinary singleDeviceBinary;
singleDeviceBinary.buildOptions = this->options;
singleDeviceBinary.targetDevice.coreFamily = gfxCore;
singleDeviceBinary.targetDevice.stepping = stepping;
singleDeviceBinary.deviceBinary = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->buildInfos[rootDeviceIndex].unpackedDeviceBinary.get()), this->buildInfos[rootDeviceIndex].unpackedDeviceBinarySize);
singleDeviceBinary.intermediateRepresentation = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->irBinary.get()), this->irBinarySize);
singleDeviceBinary.debugData = ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(this->debugData.get()), this->debugDataSize);
std::string packWarnings;
std::string packErrors;
auto packedDeviceBinary = NEO::packDeviceBinary(singleDeviceBinary, packErrors, packWarnings);
if (packedDeviceBinary.empty()) {
DEBUG_BREAK_IF(true);
return CL_OUT_OF_HOST_MEMORY;
}
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy(packedDeviceBinary.data(), packedDeviceBinary.size());
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = packedDeviceBinary.size();
} else if (nullptr != this->irBinary.get()) {
NEO::Elf::ElfEncoder<> elfEncoder(true, true, 1U);
if (this->programBinaryType == CL_PROGRAM_BINARY_TYPE_LIBRARY) {
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_LIBRARY;
} else {
elfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_OBJECTS;
}
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_SPIRV, NEO::Elf::SectionNamesOpenCl::spirvObject, ArrayRef<const uint8_t>::fromAny(this->irBinary.get(), this->irBinarySize));
elfEncoder.appendSection(NEO::Elf::SHT_OPENCL_OPTIONS, NEO::Elf::SectionNamesOpenCl::buildOptions, this->options);
auto elfData = elfEncoder.encode();
this->buildInfos[rootDeviceIndex].packedDeviceBinary = makeCopy(elfData.data(), elfData.size());
this->buildInfos[rootDeviceIndex].packedDeviceBinarySize = elfData.size();
} else {
return CL_INVALID_PROGRAM;
}
return CL_SUCCESS;
}
} // namespace NEO
|