File: enqueue_fill_image_tests.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (274 lines) | stat: -rw-r--r-- 11,849 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "opencl/source/helpers/convert_color.h"
#include "opencl/test/unit_test/command_queue/enqueue_fill_image_fixture.h"
#include "opencl/test/unit_test/gen_common/gen_commands_common_validation.h"
#include "opencl/test/unit_test/helpers/unit_test_helper.h"
#include "opencl/test/unit_test/libult/ult_command_stream_receiver.h"
#include "test.h"

#include "reg_configs_common.h"

#include <algorithm>

using namespace NEO;

class EnqueueFillImageTest : public EnqueueFillImageTestFixture,
                             public ::testing::Test {
  public:
    void SetUp(void) override {
        EnqueueFillImageTestFixture::SetUp();
    }

    void TearDown(void) override {
        EnqueueFillImageTestFixture::TearDown();
    }
};

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenTaskCountIsAlignedWithCsr) {
    //this test case assumes IOQ
    auto &csr = pDevice->getUltCommandStreamReceiver<FamilyType>();
    csr.taskCount = pCmdQ->taskCount + 100;
    csr.taskLevel = pCmdQ->taskLevel + 50;

    EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
    EXPECT_EQ(csr.peekTaskCount(), pCmdQ->taskCount);
    EXPECT_EQ(csr.peekTaskLevel(), pCmdQ->taskLevel + 1);
}

HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenFillingImageThenGpgpuWalkerIsCorrect) {
    typedef typename FamilyType::GPGPU_WALKER GPGPU_WALKER;
    enqueueFillImage<FamilyType>();

    auto *cmd = reinterpret_cast<GPGPU_WALKER *>(cmdWalker);
    ASSERT_NE(nullptr, cmd);

    // Verify GPGPU_WALKER parameters
    EXPECT_NE(0u, cmd->getThreadGroupIdXDimension());
    EXPECT_NE(0u, cmd->getThreadGroupIdYDimension());
    EXPECT_NE(0u, cmd->getThreadGroupIdZDimension());
    EXPECT_NE(0u, cmd->getRightExecutionMask());
    EXPECT_NE(0u, cmd->getBottomExecutionMask());
    EXPECT_EQ(GPGPU_WALKER::SIMD_SIZE_SIMD32, cmd->getSimdSize());
    EXPECT_NE(0u, cmd->getIndirectDataLength());
    EXPECT_FALSE(cmd->getIndirectParameterEnable());

    // Compute the SIMD lane mask
    size_t simd =
        cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD32 ? 32 : cmd->getSimdSize() == GPGPU_WALKER::SIMD_SIZE_SIMD16 ? 16 : 8;
    uint64_t simdMask = maxNBitValue(simd);

    // Mask off lanes based on the execution masks
    auto laneMaskRight = cmd->getRightExecutionMask() & simdMask;
    auto lanesPerThreadX = 0;
    while (laneMaskRight) {
        lanesPerThreadX += laneMaskRight & 1;
        laneMaskRight >>= 1;
    }
}

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenTaskLevelIsIncremented) {
    auto taskLevelBefore = pCmdQ->taskLevel;

    EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
    EXPECT_GT(pCmdQ->taskLevel, taskLevelBefore);
}

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenCommandsAreAdded) {
    auto usedCmdBufferBefore = pCS->getUsed();

    EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
    EXPECT_NE(usedCmdBufferBefore, pCS->getUsed());
}

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenIndirectDataGetsAdded) {
    auto dshBefore = pDSH->getUsed();
    auto iohBefore = pIOH->getUsed();
    auto sshBefore = pSSH->getUsed();

    EnqueueFillImageHelper<>::enqueueFillImage(pCmdQ, image);
    EXPECT_TRUE(UnitTestHelper<FamilyType>::evaluateDshUsage(dshBefore, pDSH->getUsed(), nullptr));
    EXPECT_NE(iohBefore, pIOH->getUsed());
    EXPECT_NE(sshBefore, pSSH->getUsed());
}

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenL3ProgrammingIsCorrect) {
    enqueueFillImage<FamilyType>();
    validateL3Programming<FamilyType>(cmdList, itorWalker);
}

HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenEnqueueIsDoneThenStateBaseAddressIsProperlyProgrammed) {
    enqueueFillImage<FamilyType>();
    auto &ultCsr = this->pDevice->getUltCommandStreamReceiver<FamilyType>();

    auto &hwHelper = HwHelper::get(pDevice->getHardwareInfo().platform.eRenderCoreFamily);

    validateStateBaseAddress<FamilyType>(ultCsr.getMemoryManager()->getInternalHeapBaseAddress(ultCsr.rootDeviceIndex, pIOH->getGraphicsAllocation()->isAllocatedInLocalMemoryPool()),
                                         ultCsr.getMemoryManager()->getInternalHeapBaseAddress(ultCsr.rootDeviceIndex, !hwHelper.useSystemMemoryPlacementForISA(pDevice->getHardwareInfo())),
                                         pDSH, pIOH, pSSH, itorPipelineSelect, itorWalker, cmdList, 0llu);
}

HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenFillingImageThenMediaInterfaceDescriptorLoadIsCorrect) {
    typedef typename FamilyType::MEDIA_INTERFACE_DESCRIPTOR_LOAD MEDIA_INTERFACE_DESCRIPTOR_LOAD;
    typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;

    enqueueFillImage<FamilyType>();

    // All state should be programmed before walker
    auto cmd = reinterpret_cast<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdMediaInterfaceDescriptorLoad);
    ASSERT_NE(nullptr, cmd);

    // Verify we have a valid length -- multiple of INTERFACE_DESCRIPTOR_DATAs
    EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % sizeof(INTERFACE_DESCRIPTOR_DATA));

    // Validate the start address
    size_t alignmentStartAddress = 64 * sizeof(uint8_t);
    EXPECT_EQ(0u, cmd->getInterfaceDescriptorDataStartAddress() % alignmentStartAddress);

    // Validate the length
    EXPECT_NE(0u, cmd->getInterfaceDescriptorTotalLength());
    size_t alignmentTotalLength = 32 * sizeof(uint8_t);
    EXPECT_EQ(0u, cmd->getInterfaceDescriptorTotalLength() % alignmentTotalLength);

    // Generically validate this command
    FamilyType::PARSE::template validateCommand<MEDIA_INTERFACE_DESCRIPTOR_LOAD *>(cmdList.begin(), itorMediaInterfaceDescriptorLoad);
}

HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenFillingImageThenInterfaceDescriptorDataIsCorrect) {
    typedef typename FamilyType::STATE_BASE_ADDRESS STATE_BASE_ADDRESS;
    typedef typename FamilyType::INTERFACE_DESCRIPTOR_DATA INTERFACE_DESCRIPTOR_DATA;

    enqueueFillImage<FamilyType>();

    // Extract the interfaceDescriptorData
    auto cmdSBA = (STATE_BASE_ADDRESS *)cmdStateBaseAddress;
    auto &interfaceDescriptorData = *(INTERFACE_DESCRIPTOR_DATA *)cmdInterfaceDescriptorData;

    // Validate the kernel start pointer.  Technically, a kernel can start at address 0 but let's force a value.
    auto kernelStartPointer = ((uint64_t)interfaceDescriptorData.getKernelStartPointerHigh() << 32) + interfaceDescriptorData.getKernelStartPointer();
    EXPECT_LE(kernelStartPointer, cmdSBA->getInstructionBufferSize() * MemoryConstants::pageSize);

    size_t maxLocalSize = 256u;
    auto localWorkSize = std::min(maxLocalSize,
                                  Image2dDefaults::imageDesc.image_width * Image2dDefaults::imageDesc.image_height);
    auto simd = 32u;
    auto numThreadsPerThreadGroup = Math::divideAndRoundUp(localWorkSize, simd);
    EXPECT_EQ(numThreadsPerThreadGroup, interfaceDescriptorData.getNumberOfThreadsInGpgpuThreadGroup());
    EXPECT_NE(0u, interfaceDescriptorData.getCrossThreadConstantDataReadLength());
    EXPECT_NE(0u, interfaceDescriptorData.getConstantIndirectUrbEntryReadLength());

    // We shouldn't have these pointers the same.
    EXPECT_NE(kernelStartPointer, interfaceDescriptorData.getBindingTablePointer());
}

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenSurfaceStateIsCorrect) {
    typedef typename FamilyType::RENDER_SURFACE_STATE RENDER_SURFACE_STATE;

    enqueueFillImage<FamilyType>();

    const auto &surfaceState = getSurfaceState<FamilyType>(&pCmdQ->getIndirectHeap(IndirectHeap::SURFACE_STATE, 0), 0);
    const auto &imageDesc = image->getImageDesc();
    EXPECT_EQ(imageDesc.image_width, surfaceState.getWidth());
    EXPECT_EQ(imageDesc.image_height, surfaceState.getHeight());
    EXPECT_NE(0u, surfaceState.getSurfacePitch());
    EXPECT_NE(0u, surfaceState.getSurfaceType());
    EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_HORIZONTAL_ALIGNMENT_HALIGN_4, surfaceState.getSurfaceHorizontalAlignment());
    EXPECT_EQ(RENDER_SURFACE_STATE::SURFACE_VERTICAL_ALIGNMENT_VALIGN_4, surfaceState.getSurfaceVerticalAlignment());

    const auto &srcSurfaceState = getSurfaceState<FamilyType>(&pCmdQ->getIndirectHeap(IndirectHeap::SURFACE_STATE, 0), 0);
    EXPECT_EQ(image->getGraphicsAllocation(pClDevice->getRootDeviceIndex())->getGpuAddress(), srcSurfaceState.getSurfaceBaseAddress());
}

HWTEST_F(EnqueueFillImageTest, WhenFillingImageThenNumberOfPipelineSelectsIsOne) {
    enqueueFillImage<FamilyType>();
    int numCommands = getNumberOfPipelineSelectsThatEnablePipelineSelect<FamilyType>();
    EXPECT_EQ(1, numCommands);
}

HWCMDTEST_F(IGFX_GEN8_CORE, EnqueueFillImageTest, WhenFillingImageThenMediaVfeStateIsSetCorrectly) {
    enqueueFillImage<FamilyType>();
    validateMediaVFEState<FamilyType>(&pDevice->getHardwareInfo(), cmdMediaVfeState, cmdList, itorMediaVfeState);
}

TEST_F(EnqueueFillImageTest, givenSrgbFormatWhenConvertingThenUseNormalizingFactor) {
    float *fillColor;
    int iFillColor[4] = {0};
    float LessThanZeroArray[4] = {-1.0f, -1.0f, -1.0f, 1.0f};
    float MoreThanOneArray[4] = {2.0f, 2.0f, 2.0f, 1.0f};
    float NaNArray[4] = {NAN, NAN, NAN, 1.0f};
    float distance;

    cl_image_format oldImageFormat = {CL_sRGBA, CL_UNORM_INT8};
    cl_image_format newImageFormat = {CL_RGBA, CL_UNSIGNED_INT8};

    fillColor = LessThanZeroArray;

    convertFillColor(static_cast<const void *>(fillColor), iFillColor, oldImageFormat, newImageFormat);

    for (int i = 0; i < 3; i++) {
        distance = std::fabs(0.0f - static_cast<float>(iFillColor[i]));
        EXPECT_GE(0.6f, distance);
    }
    EXPECT_EQ(255, iFillColor[3]);

    fillColor = MoreThanOneArray;

    convertFillColor(static_cast<const void *>(fillColor), iFillColor, oldImageFormat, newImageFormat);

    for (int i = 0; i < 3; i++) {
        distance = std::fabs(255.0f - static_cast<float>(iFillColor[i]));
        EXPECT_GE(0.6f, distance);
    }
    EXPECT_EQ(255, iFillColor[3]);

    fillColor = NaNArray;

    convertFillColor(static_cast<const void *>(fillColor), iFillColor, oldImageFormat, newImageFormat);

    for (int i = 0; i < 3; i++) {
        distance = std::fabs(0.0f - static_cast<float>(iFillColor[i]));
        EXPECT_GE(0.6f, distance);
    }
    EXPECT_EQ(255, iFillColor[3]);
}

TEST(ColorConvertTest, givenSnorm8FormatWhenConvertingThenUseNormalizingFactor) {
    float fFillColor[4] = {0.3f, -0.3f, 0.0f, 1.0f};
    int32_t iFillColor[4] = {};
    int32_t expectedIFillColor[4] = {};

    cl_image_format oldFormat = {CL_R, CL_SNORM_INT8};
    cl_image_format newFormat = {CL_R, CL_UNSIGNED_INT8};
    auto normalizingFactor = selectNormalizingFactor(oldFormat.image_channel_data_type);
    for (size_t i = 0; i < 4; i++) {
        expectedIFillColor[i] = static_cast<int32_t>(normalizingFactor * fFillColor[i]);
        expectedIFillColor[i] = expectedIFillColor[i] & 0xFF;
    }

    convertFillColor(static_cast<const void *>(fFillColor), iFillColor, oldFormat, newFormat);

    EXPECT_TRUE(memcmp(expectedIFillColor, iFillColor, 4 * sizeof(int32_t)) == 0);
}

TEST(ColorConvertTest, givenSnorm16FormatWhenConvertingThenUseNormalizingFactor) {
    float fFillColor[4] = {0.3f, -0.3f, 0.0f, 1.0f};
    int32_t iFillColor[4] = {};
    int32_t expectedIFillColor[4] = {};

    cl_image_format oldFormat = {CL_R, CL_SNORM_INT16};
    cl_image_format newFormat = {CL_R, CL_UNSIGNED_INT16};
    auto normalizingFactor = selectNormalizingFactor(oldFormat.image_channel_data_type);
    for (size_t i = 0; i < 4; i++) {
        expectedIFillColor[i] = static_cast<int32_t>(normalizingFactor * fFillColor[i]);
        expectedIFillColor[i] = expectedIFillColor[i] & 0xFFFF;
    }

    convertFillColor(static_cast<const void *>(fFillColor), iFillColor, oldFormat, newFormat);

    EXPECT_TRUE(memcmp(expectedIFillColor, iFillColor, 4 * sizeof(int32_t)) == 0);
}