File: local_id_tests.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (496 lines) | stat: -rw-r--r-- 21,379 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/local_id_gen.h"
#include "shared/source/helpers/ptr_math.h"

#include "opencl/test/unit_test/helpers/unit_test_helper.h"
#include "test.h"

#include <algorithm>
#include <cstdint>

using namespace NEO;

using LocalIdTests = ::testing::Test;

HWTEST_F(LocalIdTests, GivenSimd8WhenGettingGrfsPerThreadThenOneIsReturned) {
    uint32_t simd = 8;
    EXPECT_EQ(1u, getGRFsPerThread(simd, 32));
}

HWTEST_F(LocalIdTests, GivenSimd16WhenGettingGrfsPerThreadThenOneIsReturned) {
    uint32_t simd = 16;
    EXPECT_EQ(1u, getGRFsPerThread(simd, 32));
}

HWTEST_F(LocalIdTests, GivenSimd32WhenGettingGrfsPerThreadThenTwoIsReturned) {
    uint32_t simd = 32;
    EXPECT_EQ(2u, getGRFsPerThread(simd, 32));
}

HWTEST_F(LocalIdTests, GivenSimd32AndNon32GrfSizeWhenGettingGrfsPerThreadThenTwoIsReturned) {
    uint32_t simd = 32;
    EXPECT_EQ(1u, getGRFsPerThread(simd, 33));
}

TEST(LocalID, GivenSimd32AndLws33WhenGettingThreadsPerWorkgroupThenTwoIsReturned) {
    size_t lws = 33;
    uint32_t simd = 32;
    EXPECT_EQ(2u, getThreadsPerWG(simd, lws));
}

TEST(LocalID, GivenSimd8WhenGettingPerThreadSizeLocalIdsThenValueIsThreeTimesGrfSize) {
    uint32_t simd = 8;
    uint32_t grfSize = 32;

    // 3 channels (x,y,z) * 1 GRFs per thread (@SIMD8)
    EXPECT_EQ(3 * grfSize, getPerThreadSizeLocalIDs(simd, grfSize));
}

TEST(LocalID, GivenSimd16WhenGettingPerThreadSizeLocalIdsThenValueIsThreeTimesGrfSize) {
    uint32_t simd = 16;
    uint32_t grfSize = 32;

    // 3 channels (x,y,z) * 1 GRFs per thread (@SIMD16)
    EXPECT_EQ(3 * grfSize, getPerThreadSizeLocalIDs(simd, grfSize));
}

TEST(LocalID, GivenSimd8WhenGettingPerThreadSizeLocalIdsThenValueIsSixTimesGrfSize) {
    uint32_t simd = 32;
    uint32_t grfSize = 32;

    // 3 channels (x,y,z) * 2 GRFs per thread (@SIMD32)
    EXPECT_EQ(6 * grfSize, getPerThreadSizeLocalIDs(simd, grfSize));
}

TEST(LocalID, GivenSimd1WhenGettingPerThreadSizeLocalIdsThenValueIsEqualGrfSize) {
    uint32_t simd = 1;
    uint32_t grfSize = 32;

    EXPECT_EQ(grfSize, getPerThreadSizeLocalIDs(simd, grfSize));
}
TEST(LocalID, givenVariadicGrfSizeWhenLocalSizesAreEmittedTheyUseFullRowSize) {
    auto localIdsPtr = allocateAlignedMemory(3 * 64u, MemoryConstants::cacheLineSize);

    uint16_t *localIdsView = reinterpret_cast<uint16_t *>(localIdsPtr.get());
    std::array<uint16_t, 3u> localSizes = {{2u, 2u, 1u}};
    std::array<uint8_t, 3u> dimensionsOrder = {{0u, 1u, 2u}};

    generateLocalIDs(localIdsPtr.get(), 16u, localSizes, dimensionsOrder, false, 64u);
    EXPECT_EQ(localIdsView[0], 0u);
    EXPECT_EQ(localIdsView[1], 1u);
    EXPECT_EQ(localIdsView[2], 0u);
    EXPECT_EQ(localIdsView[3], 1u);

    EXPECT_EQ(localIdsView[32], 0u);
    EXPECT_EQ(localIdsView[33], 0u);
    EXPECT_EQ(localIdsView[34], 1u);
    EXPECT_EQ(localIdsView[35], 1u);

    EXPECT_EQ(localIdsView[64], 0u);
    EXPECT_EQ(localIdsView[65], 0u);
    EXPECT_EQ(localIdsView[66], 0u);
    EXPECT_EQ(localIdsView[67], 0u);
}

struct LocalIDFixture : ::testing::TestWithParam<std::tuple<int, int, int, int, int>> {
    void SetUp() override {
        simd = std::get<0>(GetParam());
        grfSize = std::get<1>(GetParam());
        localWorkSizeX = std::get<2>(GetParam());
        localWorkSizeY = std::get<3>(GetParam());
        localWorkSizeZ = std::get<4>(GetParam());

        localWorkSize = localWorkSizeX * localWorkSizeY * localWorkSizeZ;
        if (localWorkSize > 256) {
            localWorkSizeY = std::min(256 / localWorkSizeX, localWorkSizeY);
            localWorkSizeZ = std::min(256 / (localWorkSizeX * localWorkSizeY), localWorkSizeZ);
            localWorkSize = localWorkSizeX * localWorkSizeY * localWorkSizeZ;
        }

        const auto bufferSize = 32 * 3 * 16 * sizeof(uint16_t);
        buffer = reinterpret_cast<uint16_t *>(alignedMalloc(bufferSize, 32));
        memset(buffer, 0xff, bufferSize);
    }

    void TearDown() override {
        alignedFree(buffer);
    }

    void validateIDWithinLimits(uint32_t simd, uint32_t lwsX, uint32_t lwsY, uint32_t lwsZ, bool useFullRowSize) {
        auto idsPerThread = simd;

        // As per BackEnd HLD, SIMD32 has 32 localIDs per channel.  SIMD8/16 has up to 16 localIDs.
        auto skipPerThread = (simd == 32 || useFullRowSize) ? 32 : 16;

        auto pBufferX = buffer;
        auto pBufferY = pBufferX + skipPerThread;
        auto pBufferZ = pBufferY + skipPerThread;

        auto numWorkItems = lwsX * lwsY * lwsZ;

        size_t itemIndex = 0;
        while (numWorkItems > 0) {
            EXPECT_LT(pBufferX[itemIndex], lwsX) << simd << " " << lwsX << " " << lwsY << " " << lwsZ;
            EXPECT_LT(pBufferY[itemIndex], lwsY) << simd << " " << lwsX << " " << lwsY << " " << lwsZ;
            EXPECT_LT(pBufferZ[itemIndex], lwsZ) << simd << " " << lwsX << " " << lwsY << " " << lwsZ;
            ++itemIndex;
            if (idsPerThread == itemIndex) {
                pBufferX += skipPerThread * 3;
                pBufferY += skipPerThread * 3;
                pBufferZ += skipPerThread * 3;

                itemIndex = 0;
            }
            --numWorkItems;
        }
    }

    void validateAllWorkItemsCovered(uint32_t simd, uint32_t lwsX, uint32_t lwsY, uint32_t lwsZ, bool useFullRow) {
        auto idsPerThread = simd;

        // As per BackEnd HLD, SIMD32 has 32 localIDs per channel.  SIMD8/16 has up to 16 localIDs.
        auto skipPerThread = (simd == 32 || useFullRow) ? 32 : 16;

        auto pBufferX = buffer;
        auto pBufferY = pBufferX + skipPerThread;
        auto pBufferZ = pBufferY + skipPerThread;

        auto numWorkItems = lwsX * lwsY * lwsZ;

        // Initialize local ID hit table
        uint32_t localIDHitTable[8];
        memset(localIDHitTable, 0, sizeof(localIDHitTable));

        size_t itemIndex = 0;
        while (numWorkItems > 0) {
            // Flatten out the IDs
            auto workItem = pBufferX[itemIndex] + pBufferY[itemIndex] * lwsX + pBufferZ[itemIndex] * lwsX * lwsY;
            ASSERT_LT(workItem, 256u);

            // Look up in the hit table
            auto &hitItem = localIDHitTable[workItem / 32];
            auto hitBit = 1 << (workItem % 32);

            // No double-hits
            EXPECT_EQ(0u, hitItem & hitBit);

            // Set that work item as hit
            hitItem |= hitBit;

            ++itemIndex;
            if (idsPerThread == itemIndex) {
                pBufferX += skipPerThread * 3;
                pBufferY += skipPerThread * 3;
                pBufferZ += skipPerThread * 3;

                itemIndex = 0;
            }
            --numWorkItems;
        }

        // All entries in hit table should be in form of n^2 - 1
        for (uint32_t i : localIDHitTable) {
            EXPECT_EQ(0u, i & (i + 1));
        }
    }

    void validateWalkOrder(uint32_t simd, uint32_t localWorkgroupSizeX, uint32_t localWorkgroupSizeY, uint32_t localWorkgroupSizeZ,
                           const std::array<uint8_t, 3> &dimensionsOrder) {
        std::array<uint8_t, 3> walkOrder = {};
        for (uint32_t i = 0; i < 3; ++i) {
            // inverts the walk order mapping (from DIM_ID->ORDER_ID to ORDER_ID->DIM_ID)
            walkOrder[dimensionsOrder[i]] = i;
        }

        auto skipPerThread = simd == 32 ? 32 : 16;

        auto pBufferX = buffer;
        auto pBufferY = pBufferX + skipPerThread;
        auto pBufferZ = pBufferY + skipPerThread;
        decltype(pBufferX) ids[] = {pBufferX, pBufferY, pBufferZ};
        uint32_t sizes[] = {localWorkgroupSizeX, localWorkgroupSizeY, localWorkgroupSizeZ};

        uint32_t flattenedId = 0;
        for (uint32_t id2 = 0; id2 < sizes[walkOrder[2]]; ++id2) {
            for (uint32_t id1 = 0; id1 < sizes[walkOrder[1]]; ++id1) {
                for (uint32_t id0 = 0; id0 < sizes[walkOrder[0]]; ++id0) {
                    uint32_t threadId = flattenedId / simd;
                    uint32_t channelId = flattenedId % simd;
                    uint16_t foundId0 = ids[walkOrder[0]][channelId + threadId * skipPerThread * 3];
                    uint16_t foundId1 = ids[walkOrder[1]][channelId + threadId * skipPerThread * 3];
                    uint16_t foundId2 = ids[walkOrder[2]][channelId + threadId * skipPerThread * 3];
                    if ((id0 != foundId0) || (id1 != foundId1) || (id2 != foundId2)) {
                        EXPECT_EQ(id0, foundId0) << simd << " X @ (" << id0 << ", " << id1 << ", " << id2 << ") - flat " << flattenedId;
                        EXPECT_EQ(id1, foundId1) << simd << " Y @ (" << id0 << ", " << id1 << ", " << id2 << ") - flat " << flattenedId;
                        EXPECT_EQ(id2, foundId2) << simd << " Z @ (" << id0 << ", " << id1 << ", " << id2 << ") - flat " << flattenedId;
                    }
                    ++flattenedId;
                }
            }
        }
    }

    void dumpBuffer(uint32_t simd, uint32_t lwsX, uint32_t lwsY, uint32_t lwsZ) {
        auto workSize = lwsX * lwsY * lwsZ;
        auto threads = Math::divideAndRoundUp(workSize, simd);

        auto pBuffer = buffer;

        // As per BackEnd HLD, SIMD32 has 32 localIDs per channel.  SIMD8/16 has up to 16 localIDs.
        auto skipPerThread = simd == 32 ? 32 : 16;

        while (threads-- > 0) {
            auto lanes = std::min(workSize, simd);

            for (auto dimension = 0u; dimension < 3u; ++dimension) {
                for (auto lane = 0u; lane < lanes; ++lane) {
                    printf("%04d ", (unsigned int)pBuffer[lane]);
                }
                pBuffer += skipPerThread;
                printf("\n");
            }

            workSize -= simd;
        }
    }

    // Test parameters
    uint32_t localWorkSizeX;
    uint32_t localWorkSizeY;
    uint32_t localWorkSizeZ;
    uint32_t localWorkSize;
    uint32_t simd;
    uint32_t grfSize;

    // Provide support for a max LWS of 256
    // 32 threads @ SIMD8
    // 3 channels (x/y/z)
    // 16 lanes per thread (SIMD8 - only 8 used)
    uint16_t *buffer;
};

HWTEST_P(LocalIDFixture, WhenGeneratingLocalIdsThenIdsAreWithinLimits) {
    generateLocalIDs(buffer, simd, std::array<uint16_t, 3>{{static_cast<uint16_t>(localWorkSizeX), static_cast<uint16_t>(localWorkSizeY), static_cast<uint16_t>(localWorkSizeZ)}},
                     std::array<uint8_t, 3>{{0, 1, 2}}, false, grfSize);
    validateIDWithinLimits(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, UnitTestHelper<FamilyType>::useFullRowForLocalIdsGeneration);
}

HWTEST_P(LocalIDFixture, WhenGeneratingLocalIdsThenAllWorkItemsCovered) {
    generateLocalIDs(buffer, simd, std::array<uint16_t, 3>{{static_cast<uint16_t>(localWorkSizeX), static_cast<uint16_t>(localWorkSizeY), static_cast<uint16_t>(localWorkSizeZ)}},
                     std::array<uint8_t, 3>{{0, 1, 2}}, false, grfSize);
    validateAllWorkItemsCovered(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, UnitTestHelper<FamilyType>::useFullRowForLocalIdsGeneration);
}

HWTEST_P(LocalIDFixture, WhenWalkOrderIsXyzThenProperLocalIdsAreGenerated) {
    auto dimensionsOrder = std::array<uint8_t, 3>{{0, 1, 2}};
    generateLocalIDs(buffer, simd, std::array<uint16_t, 3>{{static_cast<uint16_t>(localWorkSizeX), static_cast<uint16_t>(localWorkSizeY), static_cast<uint16_t>(localWorkSizeZ)}},
                     dimensionsOrder, false, grfSize);
    validateAllWorkItemsCovered(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, UnitTestHelper<FamilyType>::useFullRowForLocalIdsGeneration);
    validateWalkOrder(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, dimensionsOrder);
}

HWTEST_P(LocalIDFixture, WhenWalkOrderIsYxzThenProperLocalIdsAreGenerated) {
    auto dimensionsOrder = std::array<uint8_t, 3>{{1, 0, 2}};
    generateLocalIDs(buffer, simd, std::array<uint16_t, 3>{{static_cast<uint16_t>(localWorkSizeX), static_cast<uint16_t>(localWorkSizeY), static_cast<uint16_t>(localWorkSizeZ)}},
                     dimensionsOrder, false, grfSize);
    validateAllWorkItemsCovered(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, UnitTestHelper<FamilyType>::useFullRowForLocalIdsGeneration);
    validateWalkOrder(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, dimensionsOrder);
}

HWTEST_P(LocalIDFixture, WhenWalkOrderIsZyxThenProperLocalIdsAreGenerated) {
    auto dimensionsOrder = std::array<uint8_t, 3>{{2, 1, 0}};
    generateLocalIDs(buffer, simd, std::array<uint16_t, 3>{{static_cast<uint16_t>(localWorkSizeX), static_cast<uint16_t>(localWorkSizeY), static_cast<uint16_t>(localWorkSizeZ)}},
                     dimensionsOrder, false, grfSize);
    validateAllWorkItemsCovered(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, UnitTestHelper<FamilyType>::useFullRowForLocalIdsGeneration);
    validateWalkOrder(simd, localWorkSizeX, localWorkSizeY, localWorkSizeZ, dimensionsOrder);
}

TEST_P(LocalIDFixture, WhenThreadsPerWgAreGeneratedThenSizeCalculationAreCorrect) {
    auto workItems = localWorkSizeX * localWorkSizeY * localWorkSizeZ;
    auto sizeTotalPerThreadData = getThreadsPerWG(simd, workItems) * getPerThreadSizeLocalIDs(simd, grfSize);

    // Should be multiple of GRFs
    EXPECT_EQ(0u, sizeTotalPerThreadData % grfSize);

    auto numGRFsPerThread = (simd == 32) ? 2 : 1;
    auto numThreadsExpected = Math::divideAndRoundUp(workItems, simd);
    auto numGRFsExpected = 3 * numGRFsPerThread * numThreadsExpected;
    EXPECT_EQ(numGRFsExpected * grfSize, sizeTotalPerThreadData);
}

struct LocalIdsLayoutForImagesTest : ::testing::TestWithParam<std::tuple<uint16_t, uint16_t, uint16_t, uint16_t>> {
    void SetUp() override {
        simd = std::get<0>(GetParam());
        grfSize = std::get<1>(GetParam());
        localWorkSize = {{std::get<2>(GetParam()),
                          std::get<3>(GetParam()),
                          1u}};
        rowWidth = simd == 32u ? 32u : 16u;
        xDelta = simd == 8u ? 2u : 4u;
    }
    void generateLocalIds() {

        auto numGrfs = (localWorkSize.at(0) * localWorkSize.at(1) + (simd - 1)) / simd;
        elemsInBuffer = 3u * simd * numGrfs;
        if (simd == 8u) {
            elemsInBuffer *= 2;
        }
        size = elemsInBuffer * sizeof(uint16_t);
        memory = allocateAlignedMemory(size, 32);
        memset(memory.get(), 0xff, size);
        buffer = reinterpret_cast<uint16_t *>(memory.get());
        EXPECT_TRUE(isCompatibleWithLayoutForImages(localWorkSize, dimensionsOrder, simd));
        generateLocalIDs(buffer, simd, localWorkSize, dimensionsOrder, true, grfSize);
    }
    void validateGRF() {
        uint32_t totalLocalIds = localWorkSize.at(0) * localWorkSize.at(1);
        auto numRows = elemsInBuffer / rowWidth;
        auto numGrfs = numRows / 3u;
        for (auto i = 0u; i < numGrfs; i++) {

            // validate X row
            uint16_t baseX = buffer[i * 3 * rowWidth];
            uint16_t baseY = buffer[i * 3 * rowWidth + rowWidth];
            uint16_t currentX = baseX;
            for (int j = 1; j < simd; j++) {
                if (simd * i + j == totalLocalIds)
                    break;
                if (simd == 32u && baseY + 8u > localWorkSize.at(1) && j == 16u) {
                    baseX += xDelta;
                    if (baseX == localWorkSize.at(0)) {
                        baseX = 0;
                    }
                }
                currentX = baseX + ((currentX + 1) & (xDelta - 1));
                EXPECT_EQ(buffer[i * 3 * rowWidth + j], currentX);
            }

            // validate Y row
            for (int j = 0; j < simd; j++) {
                if (simd * i + j == totalLocalIds)
                    break;
                uint16_t expectedY = baseY + ((j / xDelta) & 0b111);
                if (expectedY >= localWorkSize.at(1)) {
                    expectedY -= (localWorkSize.at(1) - baseY);
                }
                EXPECT_EQ(buffer[i * 3 * rowWidth + rowWidth + j], expectedY);
            }

            // validate Z row
            for (int j = 0; j < simd; j++) {
                if (simd * i + j == totalLocalIds)
                    break;
                EXPECT_EQ(buffer[i * 3 * rowWidth + 2 * rowWidth + j], 0u);
            }
        }
    }
    uint16_t simd;
    uint16_t grfSize;
    uint8_t rowWidth;
    uint16_t xDelta;
    std::array<uint16_t, 3> localWorkSize;
    std::array<uint8_t, 3> dimensionsOrder = {{0u, 1u, 2u}};
    uint32_t elemsInBuffer;
    uint32_t size;
    std::unique_ptr<void, std::function<decltype(alignedFree)>> memory;
    uint16_t *buffer;
};

TEST(LocalIdsLayoutForImagesTest, givenLocalWorkSizeCompatibleWithLayoutForImagesWithDefaultDimensionsOrderWhenCheckLayoutForImagesCompatibilityThenReturnTrue) {
    std::array<uint16_t, 3> localWorkSize{{4u, 4u, 1u}};
    std::array<uint8_t, 3> dimensionsOrder = {{0u, 1u, 2u}};
    EXPECT_TRUE(isCompatibleWithLayoutForImages(localWorkSize, dimensionsOrder, 16u));
    EXPECT_TRUE(isCompatibleWithLayoutForImages({{4u, 12u, 1u}}, dimensionsOrder, 32u));
}

TEST(LocalIdsLayoutForImagesTest, givenLocalWorkSizeNotCompatibleWithLayoutForImagesWithDefaultDimensionsOrderWhenCheckLayoutForImagesCompatibilityThenReturnFalse) {
    std::array<uint8_t, 3> dimensionsOrder = {{0u, 1u, 2u}};
    EXPECT_FALSE(isCompatibleWithLayoutForImages({{4u, 4u, 2u}}, dimensionsOrder, 8u));
    EXPECT_FALSE(isCompatibleWithLayoutForImages({{2u, 5u, 1u}}, dimensionsOrder, 8u));
    EXPECT_FALSE(isCompatibleWithLayoutForImages({{1u, 4u, 1u}}, dimensionsOrder, 8u));
}

TEST(LocalIdsLayoutForImagesTest, given4x4x1LocalWorkSizeWithNonDefaultDimensionsOrderWhenCheckLayoutForImagesCompatibilityThenReturnFalse) {
    std::array<uint16_t, 3> localWorkSize{{2u, 4u, 1u}};
    EXPECT_FALSE(isCompatibleWithLayoutForImages(localWorkSize, {{0, 2, 1}}, 8u));
    EXPECT_FALSE(isCompatibleWithLayoutForImages(localWorkSize, {{1, 0, 2}}, 8u));
    EXPECT_FALSE(isCompatibleWithLayoutForImages(localWorkSize, {{1, 2, 0}}, 8u));
    EXPECT_FALSE(isCompatibleWithLayoutForImages(localWorkSize, {{2, 0, 1}}, 8u));
    EXPECT_FALSE(isCompatibleWithLayoutForImages(localWorkSize, {{2, 1, 0}}, 8u));
}

using LocalIdsLayoutTest = ::testing::TestWithParam<uint16_t>;

TEST_P(LocalIdsLayoutTest, givenLocalWorkgroupSize4x4x1WhenGenerateLocalIdsThenHasKernelImagesOnlyFlagDoesntMatter) {
    uint16_t simd = GetParam();
    uint8_t rowWidth = simd == 32 ? 32 : 16;
    uint16_t xDelta = simd == 8u ? 2u : 4u;
    std::array<uint16_t, 3> localWorkSize{{xDelta, 4u, 1u}};
    uint16_t totalLocalWorkSize = 4u * xDelta;
    auto dimensionsOrder = std::array<uint8_t, 3>{{0u, 1u, 2u}};
    uint32_t grfSize = 32;

    auto elemsInBuffer = rowWidth * 3u;
    auto size = elemsInBuffer * sizeof(uint16_t);

    auto alignedMemory1 = allocateAlignedMemory(size, 32);
    auto buffer1 = reinterpret_cast<uint16_t *>(alignedMemory1.get());
    memset(buffer1, 0xff, size);

    auto alignedMemory2 = allocateAlignedMemory(size, 32);
    auto buffer2 = reinterpret_cast<uint16_t *>(alignedMemory2.get());
    memset(buffer2, 0xff, size);

    generateLocalIDs(buffer1, simd, localWorkSize, dimensionsOrder, false, grfSize);
    generateLocalIDs(buffer2, simd, localWorkSize, dimensionsOrder, true, grfSize);

    for (auto i = 0u; i < elemsInBuffer / rowWidth; i++) {
        for (auto j = 0u; j < rowWidth; j++) {
            if (j < totalLocalWorkSize) {
                auto offset = (i * rowWidth + j) * sizeof(uint16_t);
                auto cmpValue = memcmp(ptrOffset(buffer1, offset), ptrOffset(buffer2, offset), sizeof(uint16_t));
                EXPECT_EQ(0, cmpValue);
            }
        }
    }
}

TEST_P(LocalIdsLayoutForImagesTest, givenLocalWorkgroupSizeCompatibleWithLayoutForImagesWhenGenerateLocalIdsWithKernelWithOnlyImagesThenAppliesLayoutForImages) {
    generateLocalIds();
    validateGRF();
}

#define SIMDParams ::testing::Values(8, 16, 32)
#if HEAVY_DUTY_TESTING
#define LWSXParams ::testing::Values(1, 7, 8, 9, 15, 16, 17, 31, 32, 33, 64, 128, 256)
#define LWSYParams ::testing::Values(1, 2, 3, 4, 5, 6, 7, 8)
#define LWSZParams ::testing::Values(1, 2, 3, 4)
#else
#define LWSXParams ::testing::Values(1, 7, 8, 9, 15, 16, 17, 31, 32, 33, 64, 128, 256)
#define LWSYParams ::testing::Values(1, 2, 4, 8)
#define LWSZParams ::testing::Values(1)
#endif

#define GRFSizeParams ::testing::Values(32)

INSTANTIATE_TEST_CASE_P(AllCombinations, LocalIDFixture, ::testing::Combine(SIMDParams, GRFSizeParams, LWSXParams, LWSYParams, LWSZParams));
INSTANTIATE_TEST_CASE_P(LayoutTests, LocalIdsLayoutTest, SIMDParams);
INSTANTIATE_TEST_CASE_P(LayoutForImagesTests, LocalIdsLayoutForImagesTest, ::testing::Combine(SIMDParams, GRFSizeParams, ::testing::Values(4, 8, 12, 20), ::testing::Values(4, 8, 12, 20)));

// To debug a specific configuration replace the list of Values with specific values.
// NOTE: You'll need a unique test prefix
INSTANTIATE_TEST_CASE_P(SingleTest, LocalIDFixture,
                        ::testing::Combine(
                            ::testing::Values(32),  //SIMD
                            ::testing::Values(32),  //GRF
                            ::testing::Values(5),   //LWSX
                            ::testing::Values(6),   //LWSY
                            ::testing::Values(7))); //LWSZ