1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "opencl/source/accelerators/intel_accelerator.h"
#include "opencl/source/accelerators/intel_motion_estimation.h"
#include "opencl/source/kernel/kernel.h"
#include "opencl/source/mem_obj/buffer.h"
#include "opencl/test/unit_test/fixtures/cl_device_fixture.h"
#include "opencl/test/unit_test/fixtures/context_fixture.h"
#include "opencl/test/unit_test/mocks/mock_buffer.h"
#include "opencl/test/unit_test/mocks/mock_context.h"
#include "opencl/test/unit_test/mocks/mock_kernel.h"
#include "opencl/test/unit_test/mocks/mock_program.h"
#include "test.h"
#include "CL/cl.h"
#include "gtest/gtest.h"
#include <memory>
using namespace NEO;
class KernelArgAcceleratorFixture : public ContextFixture, public ClDeviceFixture {
using ContextFixture::SetUp;
public:
KernelArgAcceleratorFixture() {
}
protected:
void SetUp() {
desc = {
CL_ME_MB_TYPE_4x4_INTEL,
CL_ME_SUBPIXEL_MODE_QPEL_INTEL,
CL_ME_SAD_ADJUST_MODE_HAAR_INTEL,
CL_ME_SEARCH_PATH_RADIUS_16_12_INTEL};
ClDeviceFixture::SetUp();
cl_device_id device = pClDevice;
ContextFixture::SetUp(1, &device);
pKernelInfo = std::make_unique<KernelInfo>();
KernelArgPatchInfo kernelArgPatchInfo;
pKernelInfo->kernelArgInfo.resize(1);
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector.push_back(kernelArgPatchInfo);
pKernelInfo->kernelArgInfo[0].samplerArgumentType = iOpenCL::SAMPLER_OBJECT_VME;
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].crossthreadOffset = 0x20;
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].size = (uint32_t)sizeof(uint32_t);
pKernelInfo->kernelArgInfo[0].kernelArgPatchInfoVector[0].size = 1;
pKernelInfo->kernelArgInfo[0].offsetVmeMbBlockType = 0x04;
pKernelInfo->kernelArgInfo[0].offsetVmeSubpixelMode = 0x0c;
pKernelInfo->kernelArgInfo[0].offsetVmeSadAdjustMode = 0x14;
pKernelInfo->kernelArgInfo[0].offsetVmeSearchPathType = 0x1c;
pProgram = new MockProgram(pContext, false, toClDeviceVector(*pClDevice));
pKernel = new MockKernel(pProgram, *pKernelInfo, *pClDevice);
ASSERT_EQ(CL_SUCCESS, pKernel->initialize());
pKernel->setKernelArgHandler(0, &Kernel::setArgAccelerator);
pCrossThreadData[0x04] = desc.mb_block_type;
pCrossThreadData[0x0c] = desc.subpixel_mode;
pCrossThreadData[0x14] = desc.sad_adjust_mode;
pCrossThreadData[0x1c] = desc.sad_adjust_mode;
pKernel->setCrossThreadData(&pCrossThreadData[0], sizeof(pCrossThreadData));
}
void TearDown() override {
delete pKernel;
delete pProgram;
ContextFixture::TearDown();
ClDeviceFixture::TearDown();
}
cl_motion_estimation_desc_intel desc;
MockProgram *pProgram = nullptr;
MockKernel *pKernel = nullptr;
std::unique_ptr<KernelInfo> pKernelInfo;
char pCrossThreadData[64];
};
typedef Test<KernelArgAcceleratorFixture> KernelArgAcceleratorTest;
TEST_F(KernelArgAcceleratorTest, WhenCreatingVmeAcceleratorThenCorrectKernelArgsAreSet) {
cl_int status;
cl_accelerator_intel accelerator = VmeAccelerator::create(
pContext,
CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL, sizeof(desc), &desc,
status);
ASSERT_EQ(CL_SUCCESS, status);
ASSERT_NE(nullptr, accelerator);
status = this->pKernel->setArg(0, sizeof(cl_accelerator_intel), &accelerator);
ASSERT_EQ(CL_SUCCESS, status);
char *crossThreadData = pKernel->getCrossThreadData();
const auto &arginfo = pKernelInfo->kernelArgInfo[0];
uint32_t *pMbBlockType = ptrOffset(reinterpret_cast<uint32_t *>(crossThreadData),
arginfo.offsetVmeMbBlockType);
EXPECT_EQ(desc.mb_block_type, *pMbBlockType);
uint32_t *pSubpixelMode = ptrOffset(reinterpret_cast<uint32_t *>(crossThreadData),
arginfo.offsetVmeSubpixelMode);
EXPECT_EQ(desc.subpixel_mode, *pSubpixelMode);
uint32_t *pSadAdjustMode = ptrOffset(reinterpret_cast<uint32_t *>(crossThreadData),
arginfo.offsetVmeSadAdjustMode);
EXPECT_EQ(desc.sad_adjust_mode, *pSadAdjustMode);
uint32_t *pSearchPathType = ptrOffset(reinterpret_cast<uint32_t *>(crossThreadData),
arginfo.offsetVmeSearchPathType);
EXPECT_EQ(desc.search_path_type, *pSearchPathType);
status = clReleaseAcceleratorINTEL(accelerator);
EXPECT_EQ(CL_SUCCESS, status);
}
TEST_F(KernelArgAcceleratorTest, GivenNullWhenSettingKernelArgThenInvalidArgValueErrorIsReturned) {
cl_int status;
status = this->pKernel->setArg(0, sizeof(cl_accelerator_intel), nullptr);
ASSERT_EQ(CL_INVALID_ARG_VALUE, status);
}
TEST_F(KernelArgAcceleratorTest, GivenInvalidSizeWhenSettingKernelArgThenInvalidArgSizeErrorIsReturned) {
cl_int status;
cl_accelerator_intel accelerator = VmeAccelerator::create(
pContext,
CL_ACCELERATOR_TYPE_MOTION_ESTIMATION_INTEL, sizeof(desc), &desc,
status);
ASSERT_EQ(CL_SUCCESS, status);
ASSERT_NE(nullptr, accelerator);
status = this->pKernel->setArg(0, sizeof(cl_accelerator_intel) - 1, accelerator);
ASSERT_EQ(CL_INVALID_ARG_SIZE, status);
status = clReleaseAcceleratorINTEL(accelerator);
EXPECT_EQ(CL_SUCCESS, status);
}
TEST_F(KernelArgAcceleratorTest, GivenInvalidAcceleratorWhenSettingKernelArgThenInvalidArgValueErrorIsReturned) {
cl_int status;
const void *notAnAccelerator = static_cast<void *>(pKernel);
status = this->pKernel->setArg(0, sizeof(cl_accelerator_intel), notAnAccelerator);
ASSERT_EQ(CL_INVALID_ARG_VALUE, status);
}
|