File: kernel_info_tests.cpp

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (258 lines) | stat: -rw-r--r-- 10,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/execution_environment/execution_environment.h"
#include "shared/test/unit_test/mocks/ult_device_factory.h"

#include "opencl/source/memory_manager/os_agnostic_memory_manager.h"
#include "opencl/source/program/kernel_arg_info.h"
#include "opencl/source/program/kernel_info.h"
#include "opencl/test/unit_test/fixtures/multi_root_device_fixture.h"
#include "opencl/test/unit_test/mocks/mock_execution_environment.h"
#include "opencl/test/unit_test/mocks/mock_graphics_allocation.h"

#include "gtest/gtest.h"

#include <memory>
#include <type_traits>

using namespace NEO;

TEST(KernelInfo, WhenKernelInfoIsCreatedThenItIsNotMoveableAndNotCopyable) {
    static_assert(false == std::is_move_constructible<KernelInfo>::value, "");
    static_assert(false == std::is_copy_constructible<KernelInfo>::value, "");
    static_assert(false == std::is_move_assignable<KernelInfo>::value, "");
    static_assert(false == std::is_copy_assignable<KernelInfo>::value, "");
}

TEST(KernelInfo, whenDefaultConstructedThenUsesSshFlagIsNotSet) {
    KernelInfo kernelInfo;
    EXPECT_FALSE(kernelInfo.usesSsh);
}

TEST(KernelInfo, GivenConstantMemoryKernelArgumentWhenDecodingThenArgInfoIsCorrect) {
    uint32_t argumentNumber = 0;
    auto pKernelInfo = std::make_unique<KernelInfo>();
    SPatchStatelessConstantMemoryObjectKernelArgument arg;
    arg.Token = 0xa;
    arg.Size = 0x20;
    arg.ArgumentNumber = argumentNumber;
    arg.SurfaceStateHeapOffset = 0x30;
    arg.DataParamOffset = 0x40;
    arg.DataParamSize = 0x4;
    arg.LocationIndex = static_cast<uint32_t>(-1);
    arg.LocationIndex2 = static_cast<uint32_t>(-1);

    pKernelInfo->storeKernelArgument(&arg);
    EXPECT_TRUE(pKernelInfo->usesSsh);

    const auto &argInfo = pKernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_EQ(arg.SurfaceStateHeapOffset, argInfo.offsetHeap);
    EXPECT_FALSE(argInfo.isImage);

    const auto &patchInfo = pKernelInfo->patchInfo;
    EXPECT_EQ(1u, patchInfo.statelessGlobalMemObjKernelArgs.size());
}

TEST(KernelInfo, GivenGlobalMemoryKernelArgumentWhenDecodingThenArgInfoIsCorrect) {
    uint32_t argumentNumber = 1;
    auto pKernelInfo = std::make_unique<KernelInfo>();
    SPatchStatelessGlobalMemoryObjectKernelArgument arg;
    arg.Token = 0xb;
    arg.Size = 0x30;
    arg.ArgumentNumber = argumentNumber;
    arg.SurfaceStateHeapOffset = 0x40;
    arg.DataParamOffset = 050;
    arg.DataParamSize = 0x8;
    arg.LocationIndex = static_cast<uint32_t>(-1);
    arg.LocationIndex2 = static_cast<uint32_t>(-1);

    pKernelInfo->storeKernelArgument(&arg);
    EXPECT_TRUE(pKernelInfo->usesSsh);

    const auto &argInfo = pKernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_EQ(arg.SurfaceStateHeapOffset, argInfo.offsetHeap);
    EXPECT_FALSE(argInfo.isImage);

    const auto &patchInfo = pKernelInfo->patchInfo;
    EXPECT_EQ(1u, patchInfo.statelessGlobalMemObjKernelArgs.size());
}

TEST(KernelInfo, GivenImageKernelArgumentWhenDecodingThenArgInfoIsCorrect) {
    uint32_t argumentNumber = 1;
    auto pKernelInfo = std::make_unique<KernelInfo>();
    SPatchImageMemoryObjectKernelArgument arg;
    arg.Token = 0xc;
    arg.Size = 0x20;
    arg.ArgumentNumber = argumentNumber;
    arg.Type = 0x4;
    arg.Offset = 0x40;
    arg.LocationIndex = static_cast<uint32_t>(-1);
    arg.LocationIndex2 = static_cast<uint32_t>(-1);
    arg.Writeable = true;

    pKernelInfo->storeKernelArgument(&arg);
    EXPECT_TRUE(pKernelInfo->usesSsh);

    const auto &argInfo = pKernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_EQ(sizeof(cl_mem), static_cast<size_t>(argInfo.metadata.argByValSize));
    EXPECT_EQ(arg.Offset, argInfo.offsetHeap);
    EXPECT_TRUE(argInfo.isImage);
    EXPECT_EQ(KernelArgMetadata::AccessReadWrite, argInfo.metadata.accessQualifier);
    EXPECT_TRUE(argInfo.metadata.typeQualifiers.empty());
}

TEST(KernelInfoTest, givenKernelInfoWhenCreateKernelAllocationThenCopyWholeKernelHeapToKernelAllocation) {
    KernelInfo kernelInfo;
    auto factory = UltDeviceFactory{1, 0};
    auto device = factory.rootDevices[0];
    const size_t heapSize = 0x40;
    char heap[heapSize];
    kernelInfo.heapInfo.KernelHeapSize = heapSize;
    kernelInfo.heapInfo.pKernelHeap = &heap;

    for (size_t i = 0; i < heapSize; i++) {
        heap[i] = static_cast<char>(i);
    }

    auto retVal = kernelInfo.createKernelAllocation(*device);
    EXPECT_TRUE(retVal);
    auto allocation = kernelInfo.kernelAllocation;
    EXPECT_EQ(0, memcmp(allocation->getUnderlyingBuffer(), heap, heapSize));
    EXPECT_EQ(heapSize, allocation->getUnderlyingBufferSize());
    device->getMemoryManager()->checkGpuUsageAndDestroyGraphicsAllocations(allocation);
}

class MyMemoryManager : public OsAgnosticMemoryManager {
  public:
    using OsAgnosticMemoryManager::OsAgnosticMemoryManager;
    GraphicsAllocation *allocate32BitGraphicsMemoryImpl(const AllocationData &allocationData, bool useLocalMemory) override { return nullptr; }
};

TEST(KernelInfoTest, givenKernelInfoWhenCreateKernelAllocationAndCannotAllocateMemoryThenReturnsFalse) {
    KernelInfo kernelInfo;
    auto executionEnvironment = new MockExecutionEnvironment(defaultHwInfo.get());
    executionEnvironment->memoryManager.reset(new MyMemoryManager(*executionEnvironment));
    auto device = std::unique_ptr<Device>(Device::create<RootDevice>(executionEnvironment, mockRootDeviceIndex));
    auto retVal = kernelInfo.createKernelAllocation(*device);
    EXPECT_FALSE(retVal);
}

TEST(KernelInfo, GivenGlobalMemObjectKernelArgumentWhenDecodingThenArgInfoIsCorrect) {
    uint32_t argumentNumber = 1;
    auto pKernelInfo = std::make_unique<KernelInfo>();
    SPatchGlobalMemoryObjectKernelArgument arg;
    arg.Token = 0xb;
    arg.Size = 0x10;
    arg.ArgumentNumber = argumentNumber;
    arg.Offset = 0x40;
    arg.LocationIndex = static_cast<uint32_t>(-1);
    arg.LocationIndex2 = static_cast<uint32_t>(-1);

    pKernelInfo->storeKernelArgument(&arg);
    EXPECT_TRUE(pKernelInfo->usesSsh);

    const auto &argInfo = pKernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_EQ(arg.Offset, argInfo.offsetHeap);
    EXPECT_TRUE(argInfo.isBuffer);
}

TEST(KernelInfo, GivenSamplerKernelArgumentWhenDecodingThenArgInfoIsCorrect) {
    uint32_t argumentNumber = 1;
    auto pKernelInfo = std::make_unique<KernelInfo>();
    SPatchSamplerKernelArgument arg;

    arg.ArgumentNumber = argumentNumber;
    arg.Token = 0x10;
    arg.Size = 0x18;
    arg.LocationIndex = static_cast<uint32_t>(-1);
    arg.LocationIndex2 = static_cast<uint32_t>(-1);
    arg.Offset = 0x40;
    arg.Type = iOpenCL::SAMPLER_OBJECT_TEXTURE;

    pKernelInfo->usesSsh = true;

    pKernelInfo->storeKernelArgument(&arg);

    const auto &argInfo = pKernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_EQ(arg.Offset, argInfo.offsetHeap);
    EXPECT_FALSE(argInfo.isImage);
    EXPECT_TRUE(argInfo.isSampler);
    EXPECT_TRUE(pKernelInfo->usesSsh);
}

TEST(KernelInfo, whenStoringArgInfoThenMetadataIsProperlyPopulated) {
    KernelInfo kernelInfo;
    NEO::ArgTypeTraits metadata;
    metadata.accessQualifier = NEO::KernelArgMetadata::AccessWriteOnly;
    metadata.addressQualifier = NEO::KernelArgMetadata::AddrGlobal;
    metadata.argByValSize = sizeof(void *);
    metadata.typeQualifiers.pipeQual = true;
    auto metadataExtended = std::make_unique<NEO::ArgTypeMetadataExtended>();
    auto metadataExtendedPtr = metadataExtended.get();
    kernelInfo.storeArgInfo(2, metadata, std::move(metadataExtended));

    ASSERT_EQ(3U, kernelInfo.kernelArgInfo.size());
    EXPECT_EQ(metadata.accessQualifier, kernelInfo.kernelArgInfo[2].metadata.accessQualifier);
    EXPECT_EQ(metadata.addressQualifier, kernelInfo.kernelArgInfo[2].metadata.addressQualifier);
    EXPECT_EQ(metadata.argByValSize, kernelInfo.kernelArgInfo[2].metadata.argByValSize);
    EXPECT_EQ(metadata.typeQualifiers.packed, kernelInfo.kernelArgInfo[2].metadata.typeQualifiers.packed);
    EXPECT_EQ(metadataExtendedPtr, kernelInfo.kernelArgInfo[2].metadataExtended.get());
}

TEST(KernelInfo, givenKernelInfoWhenStoreTransformableArgThenArgInfoIsTransformable) {
    uint32_t argumentNumber = 1;
    auto kernelInfo = std::make_unique<KernelInfo>();
    SPatchImageMemoryObjectKernelArgument arg;
    arg.ArgumentNumber = argumentNumber;
    arg.Transformable = true;

    kernelInfo->storeKernelArgument(&arg);
    const auto &argInfo = kernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_TRUE(argInfo.isTransformable);
}

TEST(KernelInfo, givenKernelInfoWhenStoreNonTransformableArgThenArgInfoIsNotTransformable) {
    uint32_t argumentNumber = 1;
    auto kernelInfo = std::make_unique<KernelInfo>();
    SPatchImageMemoryObjectKernelArgument arg;
    arg.ArgumentNumber = argumentNumber;
    arg.Transformable = false;

    kernelInfo->storeKernelArgument(&arg);
    const auto &argInfo = kernelInfo->kernelArgInfo[argumentNumber];
    EXPECT_FALSE(argInfo.isTransformable);
}

using KernelInfoMultiRootDeviceTests = MultiRootDeviceFixture;

TEST_F(KernelInfoMultiRootDeviceTests, kernelAllocationHasCorrectRootDeviceIndex) {
    KernelInfo kernelInfo;
    const size_t heapSize = 0x40;
    char heap[heapSize];
    kernelInfo.heapInfo.KernelHeapSize = heapSize;
    kernelInfo.heapInfo.pKernelHeap = &heap;

    auto retVal = kernelInfo.createKernelAllocation(device->getDevice());
    EXPECT_TRUE(retVal);
    auto allocation = kernelInfo.kernelAllocation;
    ASSERT_NE(nullptr, allocation);
    EXPECT_EQ(expectedRootDeviceIndex, allocation->getRootDeviceIndex());
    mockMemoryManager->checkGpuUsageAndDestroyGraphicsAllocations(allocation);
}

TEST(KernelInfo, whenGetKernelNamesStringIsCalledThenNamesAreProperlyConcatenated) {
    ExecutionEnvironment execEnv;
    KernelInfo kernel1 = {};
    kernel1.kernelDescriptor.kernelMetadata.kernelName = "kern1";
    KernelInfo kernel2 = {};
    kernel2.kernelDescriptor.kernelMetadata.kernelName = "kern2";
    std::vector<KernelInfo *> kernelInfoArray;
    kernelInfoArray.push_back(&kernel1);
    kernelInfoArray.push_back(&kernel2);
    EXPECT_STREQ("kern1;kern2", concatenateKernelNames(kernelInfoArray).c_str());
}