1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
/*
* Copyright (C) 2018-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "binary_encoder.h"
#include "shared/offline_compiler/source/offline_compiler.h"
#include "shared/source/device_binary_format/elf/elf_encoder.h"
#include "shared/source/device_binary_format/elf/ocl_elf.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/file_io.h"
#include "shared/source/helpers/hash.h"
#include "CL/cl.h"
#include "helper.h"
#include <algorithm>
#include <cstring>
#include <fstream>
#include <sstream>
void BinaryEncoder::calculatePatchListSizes(std::vector<std::string> &ptmFile) {
size_t patchListPos = 0;
for (size_t i = 0; i < ptmFile.size(); ++i) {
if (ptmFile[i].find("PatchListSize") != std::string::npos) {
patchListPos = i;
} else if (ptmFile[i].find("PATCH_TOKEN") != std::string::npos) {
uint32_t calcSize = 0;
i++;
while (i < ptmFile.size() && ptmFile[i].find("Kernel #") == std::string::npos) {
if (ptmFile[i].find(':') == std::string::npos) {
if (ptmFile[i].find("Hex") != std::string::npos) {
calcSize += static_cast<uint32_t>(std::count(ptmFile[i].begin(), ptmFile[i].end(), ' '));
} else {
calcSize += std::atoi(&ptmFile[i][1]);
}
}
i++;
}
uint32_t size = static_cast<uint32_t>(std::stoul(ptmFile[patchListPos].substr(ptmFile[patchListPos].find_last_of(' ') + 1)));
if (size != calcSize) {
argHelper->printf("Warning! Calculated PatchListSize ( %u ) differs from file ( %u ) - changing it. Line %d\n", calcSize, size, static_cast<int>(patchListPos + 1));
ptmFile[patchListPos] = ptmFile[patchListPos].substr(0, ptmFile[patchListPos].find_last_of(' ') + 1);
ptmFile[patchListPos] += std::to_string(calcSize);
}
}
}
}
bool BinaryEncoder::copyBinaryToBinary(const std::string &srcFileName, std::ostream &outBinary, uint32_t *binaryLength) {
if (!argHelper->fileExists(srcFileName)) {
return false;
}
auto binary = argHelper->readBinaryFile(srcFileName);
auto length = binary.size();
outBinary.write(binary.data(), length);
if (binaryLength) {
*binaryLength = static_cast<uint32_t>(length);
}
return true;
}
int BinaryEncoder::createElf(std::stringstream &deviceBinary) {
NEO::Elf::ElfEncoder<NEO::Elf::EI_CLASS_64> ElfEncoder;
ElfEncoder.getElfFileHeader().type = NEO::Elf::ET_OPENCL_EXECUTABLE;
//Build Options
if (argHelper->fileExists(pathToDump + "build.bin")) {
auto binary = argHelper->readBinaryFile(pathToDump + "build.bin");
ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_OPTIONS, "BuildOptions",
ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(binary.data()), binary.size()));
} else {
argHelper->printf("Warning! Missing build section.\n");
}
//LLVM or SPIRV
if (argHelper->fileExists(pathToDump + "llvm.bin")) {
auto binary = argHelper->readBinaryFile(pathToDump + "llvm.bin");
ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_LLVM_BINARY, "Intel(R) OpenCL LLVM Object",
ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(binary.data()), binary.size()));
} else if (argHelper->fileExists(pathToDump + "spirv.bin")) {
auto binary = argHelper->readBinaryFile(pathToDump + "spirv.bin");
ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_SPIRV, "SPIRV Object",
ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(binary.data()), binary.size()));
} else {
argHelper->printf("Warning! Missing llvm/spirv section.\n");
}
//Device Binary
auto deviceBinaryStr = deviceBinary.str();
std::vector<char> binary(deviceBinaryStr.begin(), deviceBinaryStr.end());
ElfEncoder.appendSection(NEO::Elf::SHT_OPENCL_DEV_BINARY, "Intel(R) OpenCL Device Binary",
ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(binary.data()), binary.size()));
//Resolve Elf Binary
auto elfBinary = ElfEncoder.encode();
argHelper->saveOutput(elfName, elfBinary.data(), elfBinary.size());
return 0;
}
void BinaryEncoder::printHelp() {
argHelper->printf(R"===(Assembles Intel Compute GPU device binary from input files.
It's expected that input files were previously generated by 'ocloc disasm'
command or are compatible with 'ocloc disasm' output (especially in terms of
file naming scheme). See 'ocloc disasm --help' for additional info.
Usage: ocloc asm -out <out_file> [-dump <dump_dir>] [-device <device_type>] [-ignore_isa_padding]
-out <out_file> Filename for newly assembled binary.
-dump <dumping_dir> Path to the input directory containing
disassembled binary (as disassembled
by ocloc's disasm command).
Default is './dump'.
-device <device_type> Optional target device of output binary
<device_type> can be: %s
By default ocloc will pick base device within
a generation - i.e. both skl and kbl will
fallback to skl. If specific product (e.g. kbl)
is needed, provide it as device_type.
-ignore_isa_padding Ignores Kernel Heap padding - padding will not
be added to Kernel Heap binary.
--help Print this usage message.
Examples:
Assemble to Intel Compute GPU device binary
ocloc asm -out reassembled.bin
)===",
NEO::getDevicesTypes().c_str());
}
int BinaryEncoder::encode() {
std::vector<std::string> ptmFile;
if (!argHelper->fileExists(pathToDump + "PTM.txt")) {
argHelper->printf("Error! Couldn't find PTM.txt");
return -1;
}
argHelper->readFileToVectorOfStrings(pathToDump + "PTM.txt", ptmFile);
calculatePatchListSizes(ptmFile);
std::stringstream deviceBinary; //(pathToDump + "device_binary.bin", std::ios::binary);
int retVal = processBinary(ptmFile, deviceBinary);
argHelper->saveOutput(pathToDump + "device_binary.bin", deviceBinary.str().c_str(), deviceBinary.str().length());
if (retVal != 0) {
return retVal;
}
retVal = createElf(deviceBinary);
return retVal;
}
int BinaryEncoder::processBinary(const std::vector<std::string> &ptmFileLines, std::ostream &deviceBinary) {
if (false == iga->isKnownPlatform()) {
auto deviceMarker = findPos(ptmFileLines, "Device");
if (deviceMarker != ptmFileLines.size()) {
std::stringstream ss(ptmFileLines[deviceMarker]);
ss.ignore(32, ' ');
ss.ignore(32, ' ');
uint32_t gfxCore = 0;
ss >> gfxCore;
iga->setGfxCore(static_cast<GFXCORE_FAMILY>(gfxCore));
}
}
size_t i = 0;
while (i < ptmFileLines.size()) {
if (ptmFileLines[i].find("Kernel #") != std::string::npos) {
if (processKernel(++i, ptmFileLines, deviceBinary)) {
argHelper->printf("Warning while processing kernel!\n");
return -1;
}
} else if (writeDeviceBinary(ptmFileLines[i++], deviceBinary)) {
argHelper->printf("Error while writing to binary!\n");
return -1;
}
}
return 0;
}
void BinaryEncoder::addPadding(std::ostream &out, size_t numBytes) {
for (size_t i = 0; i < numBytes; ++i) {
const char nullByte = 0;
out.write(&nullByte, 1U);
}
}
int BinaryEncoder::processKernel(size_t &line, const std::vector<std::string> &ptmFileLines, std::ostream &deviceBinary) {
auto kernelInfoBeginMarker = line;
auto kernelInfoEndMarker = ptmFileLines.size();
auto kernelNameMarker = ptmFileLines.size();
auto kernelPatchtokensMarker = ptmFileLines.size();
std::stringstream kernelBlob;
// Normally these are added by the compiler, need to take or of them when reassembling
constexpr size_t isaPaddingSizeInBytes = 128;
constexpr uint32_t kernelHeapAlignmentInBytes = 64;
uint32_t kernelNameSizeInBinary = 0;
std::string kernelName;
// Scan PTM lines for kernel info
while (line < ptmFileLines.size()) {
if (ptmFileLines[line].find("KernelName ") != std::string::npos) {
kernelName = std::string(ptmFileLines[line], ptmFileLines[line].find(' ') + 1);
kernelNameMarker = line;
kernelPatchtokensMarker = kernelNameMarker + 1; // patchtokens come after name
} else if (ptmFileLines[line].find("KernelNameSize") != std::string::npos) {
std::stringstream ss(ptmFileLines[line]);
ss.ignore(32, ' ');
ss.ignore(32, ' ');
ss >> kernelNameSizeInBinary;
} else if (ptmFileLines[line].find("Kernel #") != std::string::npos) {
kernelInfoEndMarker = line;
break;
}
++line;
}
// Write KernelName and padding
kernelBlob.write(kernelName.c_str(), kernelName.size());
addPadding(kernelBlob, kernelNameSizeInBinary - kernelName.size());
// Write KernelHeap and padding
uint32_t kernelHeapSizeUnpadded = 0U;
bool heapsCopiedSuccesfully = true;
// Use .asm if available, fallback to .dat
if (argHelper->fileExists(pathToDump + kernelName + "_KernelHeap.asm")) {
auto kernelAsAsm = argHelper->readBinaryFile(pathToDump + kernelName + "_KernelHeap.asm");
std::string kernelAsBinary;
argHelper->printf("Trying to assemble %s.asm\n", kernelName.c_str());
if (false == iga->tryAssembleGenISA(std::string(kernelAsAsm.begin(), kernelAsAsm.end()), kernelAsBinary)) {
argHelper->printf("Error : Could not assemble : %s\n", kernelName.c_str());
return -1;
}
kernelHeapSizeUnpadded = static_cast<uint32_t>(kernelAsBinary.size());
kernelBlob.write(kernelAsBinary.data(), kernelAsBinary.size());
} else {
heapsCopiedSuccesfully = copyBinaryToBinary(pathToDump + kernelName + "_KernelHeap.dat", kernelBlob, &kernelHeapSizeUnpadded);
}
uint32_t kernelHeapSize = 0U;
// Adding padding and alignment
if (ignoreIsaPadding) {
kernelHeapSize = kernelHeapSizeUnpadded;
} else {
addPadding(kernelBlob, isaPaddingSizeInBytes);
const uint32_t kernelHeapPaddedSize = kernelHeapSizeUnpadded + isaPaddingSizeInBytes;
kernelHeapSize = alignUp(kernelHeapPaddedSize, kernelHeapAlignmentInBytes);
addPadding(kernelBlob, kernelHeapSize - kernelHeapPaddedSize);
}
// Write GeneralStateHeap, DynamicStateHeap, SurfaceStateHeap
if (argHelper->fileExists(pathToDump + kernelName + "_GeneralStateHeap.bin")) {
heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_GeneralStateHeap.bin", kernelBlob);
}
heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_DynamicStateHeap.bin", kernelBlob);
heapsCopiedSuccesfully = heapsCopiedSuccesfully && copyBinaryToBinary(pathToDump + kernelName + "_SurfaceStateHeap.bin", kernelBlob);
if (false == heapsCopiedSuccesfully) {
return -1;
}
// Write kernel patchtokens
for (size_t i = kernelPatchtokensMarker; i < kernelInfoEndMarker; ++i) {
if (writeDeviceBinary(ptmFileLines[i], kernelBlob)) {
argHelper->printf("Error while writing to binary.\n");
return -1;
}
}
auto kernelBlobData = kernelBlob.str();
uint64_t hashValue = NEO::Hash::hash(reinterpret_cast<const char *>(kernelBlobData.data()), kernelBlobData.size());
uint32_t calcCheckSum = hashValue & 0xFFFFFFFF;
// Add kernel header
for (size_t i = kernelInfoBeginMarker; i < kernelNameMarker; ++i) {
if (ptmFileLines[i].find("CheckSum") != std::string::npos) {
static_assert(std::is_same<decltype(calcCheckSum), uint32_t>::value, "");
deviceBinary.write(reinterpret_cast<char *>(&calcCheckSum), sizeof(uint32_t));
} else if (ptmFileLines[i].find("KernelHeapSize") != std::string::npos) {
static_assert(sizeof(kernelHeapSize) == sizeof(uint32_t), "");
deviceBinary.write(reinterpret_cast<const char *>(&kernelHeapSize), sizeof(uint32_t));
} else if (ptmFileLines[i].find("KernelUnpaddedSize") != std::string::npos) {
static_assert(sizeof(kernelHeapSizeUnpadded) == sizeof(uint32_t), "");
deviceBinary.write(reinterpret_cast<char *>(&kernelHeapSizeUnpadded), sizeof(uint32_t));
} else {
if (writeDeviceBinary(ptmFileLines[i], deviceBinary)) {
argHelper->printf("Error while writing to binary.\n");
return -1;
}
}
}
// Add kernel blob after the header
deviceBinary.write(kernelBlobData.c_str(), kernelBlobData.size());
return 0;
}
int BinaryEncoder::validateInput(const std::vector<std::string> &args) {
if ("-help" == args[args.size() - 1]) {
printHelp();
return -1;
}
for (size_t argIndex = 2; argIndex < args.size(); ++argIndex) {
const auto &currArg = args[argIndex];
const bool hasMoreArgs = (argIndex + 1 < args.size());
if ("-dump" == currArg && hasMoreArgs) {
pathToDump = args[++argIndex];
addSlash(pathToDump);
} else if ("-device" == currArg && hasMoreArgs) {
iga->setProductFamily(getProductFamilyFromDeviceName(args[++argIndex]));
} else if ("-out" == currArg && hasMoreArgs) {
elfName = args[++argIndex];
} else if ("-ignore_isa_padding" == currArg) {
ignoreIsaPadding = true;
} else if ("-q" == currArg) {
argHelper->getPrinterRef() = MessagePrinter(true);
iga->setMessagePrinter(argHelper->getPrinterRef());
} else {
argHelper->printf("Unknown argument %s\n", currArg.c_str());
printHelp();
return -1;
}
}
if (pathToDump.empty()) {
if (!argHelper->outputEnabled()) {
argHelper->printf("Warning : Path to dump folder not specificed - using ./dump as default.\n");
pathToDump = "dump";
addSlash(pathToDump);
}
}
if (elfName.find(".bin") == std::string::npos) {
argHelper->printf(".bin extension is expected for binary file.\n");
printHelp();
return -1;
}
if (false == iga->isKnownPlatform()) {
argHelper->printf("Warning : missing or invalid -device parameter - results may be inacurate\n");
}
return 0;
}
template <typename T>
void BinaryEncoder::write(std::stringstream &in, std::ostream &deviceBinary) {
T val;
in >> val;
deviceBinary.write(reinterpret_cast<const char *>(&val), sizeof(T));
}
template <>
void BinaryEncoder::write<uint8_t>(std::stringstream &in, std::ostream &deviceBinary) {
uint8_t val;
uint16_t help;
in >> help;
val = static_cast<uint8_t>(help);
deviceBinary.write(reinterpret_cast<const char *>(&val), sizeof(uint8_t));
}
template void BinaryEncoder::write<uint16_t>(std::stringstream &in, std::ostream &deviceBinary);
template void BinaryEncoder::write<uint32_t>(std::stringstream &in, std::ostream &deviceBinary);
template void BinaryEncoder::write<uint64_t>(std::stringstream &in, std::ostream &deviceBinary);
int BinaryEncoder::writeDeviceBinary(const std::string &line, std::ostream &deviceBinary) {
if (line.find(':') != std::string::npos) {
return 0;
} else if (line.find("Hex") != std::string::npos) {
std::stringstream ss(line);
ss.ignore(32, ' ');
uint16_t tmp;
uint8_t byte;
while (!ss.eof()) {
ss >> std::hex >> tmp;
byte = static_cast<uint8_t>(tmp);
deviceBinary.write(reinterpret_cast<const char *>(&byte), sizeof(uint8_t));
}
} else {
std::stringstream ss(line);
uint16_t size;
std::string name;
ss >> size;
ss >> name;
switch (size) {
case 1:
write<uint8_t>(ss, deviceBinary);
break;
case 2:
write<uint16_t>(ss, deviceBinary);
break;
case 4:
write<uint32_t>(ss, deviceBinary);
break;
case 8:
write<uint64_t>(ss, deviceBinary);
break;
default:
argHelper->printf("Unknown size in line: %s\n", line.c_str());
return -1;
}
}
return 0;
}
|