1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Copyright (C) 2019-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/memory_manager/gfx_partition.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/heap_assigner.h"
#include "shared/source/memory_manager/memory_manager.h"
namespace NEO {
const std::array<HeapIndex, 4> GfxPartition::heap32Names{{HeapIndex::HEAP_INTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_INTERNAL,
HeapIndex::HEAP_EXTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_EXTERNAL}};
const std::array<HeapIndex, 7> GfxPartition::heapNonSvmNames{{HeapIndex::HEAP_INTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_INTERNAL,
HeapIndex::HEAP_EXTERNAL_DEVICE_MEMORY,
HeapIndex::HEAP_EXTERNAL,
HeapIndex::HEAP_STANDARD,
HeapIndex::HEAP_STANDARD64KB,
HeapIndex::HEAP_EXTENDED}};
GfxPartition::GfxPartition(OSMemory::ReservedCpuAddressRange &sharedReservedCpuAddressRange) : reservedCpuAddressRange(sharedReservedCpuAddressRange), osMemory(OSMemory::create()) {}
GfxPartition::~GfxPartition() {
osMemory->releaseCpuAddressRange(reservedCpuAddressRange);
reservedCpuAddressRange = {0};
}
void GfxPartition::Heap::init(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
// Exclude very first and very last 64K from GPU address range allocation
if (size > 2 * GfxPartition::heapGranularity) {
size -= 2 * GfxPartition::heapGranularity;
}
alloc = std::make_unique<HeapAllocator>(base + GfxPartition::heapGranularity, size);
}
void GfxPartition::Heap::initExternalWithFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
size -= GfxPartition::heapGranularity;
alloc = std::make_unique<HeapAllocator>(base, size, 0u);
}
void GfxPartition::Heap::initWithFrontWindow(uint64_t base, uint64_t size, uint64_t frontWindowSize) {
this->base = base;
this->size = size;
// Exclude very very last 64K from GPU address range allocation
size -= GfxPartition::heapGranularity;
size -= frontWindowSize;
alloc = std::make_unique<HeapAllocator>(base + frontWindowSize, size);
}
void GfxPartition::Heap::initFrontWindow(uint64_t base, uint64_t size) {
this->base = base;
this->size = size;
alloc = std::make_unique<HeapAllocator>(base, size, 0u);
}
void GfxPartition::freeGpuAddressRange(uint64_t ptr, size_t size) {
for (auto heapName : GfxPartition::heapNonSvmNames) {
auto &heap = getHeap(heapName);
if ((ptr > heap.getBase()) && ((ptr + size) < heap.getLimit())) {
heap.free(ptr, size);
break;
}
}
}
bool GfxPartition::init(uint64_t gpuAddressSpace, size_t cpuAddressRangeSizeToReserve, uint32_t rootDeviceIndex, size_t numRootDevices, bool useFrontWindowPool) {
/*
* I. 64-bit builds:
*
* 1) 48-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |__________________________________|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x0000800000000000 0x0000FFFFFFFFFFFF
*
*
* 2) 47-bit Full Range SVM gfx layout:
*
* gfxSize = 2^47 / 4 = 0x200000000000
* ________________________________________________
* / \
* SVM / H0 H1 H2 H3 STANDARD STANDARD64K \ SVM
* |________________|____|____|____|____|________________|______________|_______________|
* | | | | | | | | |
* | gfxBase gfxTop |
* 0x0 reserveCpuAddressRange(gfxSize) 0x00007FFFFFFFFFFF
* \_____________________________________ SVM _________________________________________/
*
*
*
* 3) Limited Range gfx layout (no SVM):
*
* H0 H1 H2 H3 STANDARD STANDARD64K
* |____|____|____|____|____________________|__________________|
* | | | | | | |
* gfxBase gfxTop
* 0x0 0xFFF...FFF < 47 bit
*
*
* II. 32-bit builds:
*
* 1) 32-bit Full Range SVM gfx layout:
*
* SVM H0 H1 H2 H3 STANDARD STANDARD64K
* |_______|____|____|____|____|________________|______________|
* | | | | | | | |
* | gfxBase gfxTop
* 0x0 0x100000000 gpuAddressSpace
*/
uint64_t gfxTop = gpuAddressSpace + 1;
uint64_t gfxBase = 0x0ull;
const uint64_t gfxHeap32Size = 4 * MemoryConstants::gigaByte;
if (is32bit) {
gfxBase = maxNBitValue(32) + 1;
heapInit(HeapIndex::HEAP_SVM, 0ull, gfxBase);
} else {
if (gpuAddressSpace == maxNBitValue(48)) {
gfxBase = maxNBitValue(48 - 1) + 1;
heapInit(HeapIndex::HEAP_SVM, 0ull, gfxBase);
} else if (gpuAddressSpace == maxNBitValue(47)) {
if (reservedCpuAddressRange.alignedPtr == nullptr) {
if (cpuAddressRangeSizeToReserve == 0) {
return false;
}
reservedCpuAddressRange = osMemory->reserveCpuAddressRange(cpuAddressRangeSizeToReserve, GfxPartition::heapGranularity);
if (reservedCpuAddressRange.originalPtr == nullptr) {
return false;
}
if (!isAligned<GfxPartition::heapGranularity>(reservedCpuAddressRange.alignedPtr)) {
return false;
}
}
gfxBase = reinterpret_cast<uint64_t>(reservedCpuAddressRange.alignedPtr);
gfxTop = gfxBase + cpuAddressRangeSizeToReserve;
heapInit(HeapIndex::HEAP_SVM, 0ull, gpuAddressSpace + 1);
} else if (gpuAddressSpace < maxNBitValue(47)) {
gfxBase = 0ull;
heapInit(HeapIndex::HEAP_SVM, 0ull, 0ull);
} else {
if (!initAdditionalRange(gpuAddressSpace, gfxBase, gfxTop, rootDeviceIndex, numRootDevices)) {
return false;
}
}
}
for (auto heap : GfxPartition::heap32Names) {
if (useFrontWindowPool && HeapAssigner::heapTypeWithFrontWindowPool(heap)) {
heapInitExternalWithFrontWindow(heap, gfxBase, gfxHeap32Size);
size_t externalFrontWindowSize = GfxPartition::externalFrontWindowPoolSize;
heapInitExternalWithFrontWindow(HeapAssigner::mapExternalWindowIndex(heap), heapAllocate(heap, externalFrontWindowSize),
externalFrontWindowSize);
} else if (HeapAssigner::isInternalHeap(heap)) {
heapInitWithFrontWindow(heap, gfxBase, gfxHeap32Size, GfxPartition::internalFrontWindowPoolSize);
heapInitFrontWindow(HeapAssigner::mapInternalWindowIndex(heap), gfxBase, GfxPartition::internalFrontWindowPoolSize);
} else {
heapInit(heap, gfxBase, gfxHeap32Size);
}
gfxBase += gfxHeap32Size;
}
uint64_t gfxStandardSize = alignDown((gfxTop - gfxBase) >> 1, heapGranularity);
heapInit(HeapIndex::HEAP_STANDARD, gfxBase, gfxStandardSize);
gfxBase += gfxStandardSize;
// Split HEAP_STANDARD64K among root devices
auto gfxStandard64KBSize = alignDown(gfxStandardSize / numRootDevices, GfxPartition::heapGranularity);
heapInit(HeapIndex::HEAP_STANDARD64KB, gfxBase + rootDeviceIndex * gfxStandard64KBSize, gfxStandard64KBSize);
return true;
}
} // namespace NEO
|