1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/*
* Copyright (C) 2017-2020 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "print_formatter.h"
#include "shared/source/helpers/string.h"
#include <iostream>
namespace NEO {
PrintFormatter::PrintFormatter(const uint8_t *printfOutputBuffer, uint32_t printfOutputBufferMaxSize,
bool using32BitPointers, const StringMap &stringLiteralMap)
: printfOutputBuffer(printfOutputBuffer),
printfOutputBufferSize(printfOutputBufferMaxSize),
stringLiteralMap(stringLiteralMap),
using32BitPointers(using32BitPointers) {
}
void PrintFormatter::printKernelOutput(const std::function<void(char *)> &print) {
currentOffset = 0;
// first 4 bytes of the buffer store the actual size of data that was written by printf from within EUs
uint32_t printfOutputBufferSizeRead = 0;
read(&printfOutputBufferSizeRead);
printfOutputBufferSize = std::min(printfOutputBufferSizeRead, printfOutputBufferSize);
uint32_t stringIndex = 0;
while (currentOffset + 4 <= printfOutputBufferSize) {
read(&stringIndex);
const char *formatString = queryPrintfString(stringIndex);
if (formatString != nullptr) {
printString(formatString, print);
}
}
}
void PrintFormatter::printString(const char *formatString, const std::function<void(char *)> &print) {
size_t length = strnlen_s(formatString, maxPrintfOutputLength);
char output[maxPrintfOutputLength];
size_t cursor = 0;
for (size_t i = 0; i <= length; i++) {
if (formatString[i] == '\\')
output[cursor++] = escapeChar(formatString[++i]);
else if (formatString[i] == '%') {
size_t end = i;
if (end + 1 <= length && formatString[end + 1] == '%') {
output[cursor++] = '%';
continue;
}
while (isConversionSpecifier(formatString[end++]) == false && end < length)
;
char dataFormat[maxPrintfOutputLength];
memcpy_s(dataFormat, maxPrintfOutputLength, formatString + i, end - i);
dataFormat[end - i] = '\0';
if (formatString[end - 1] == 's')
cursor += printStringToken(output + cursor, maxPrintfOutputLength - cursor, dataFormat);
else
cursor += printToken(output + cursor, maxPrintfOutputLength - cursor, dataFormat);
i = end - 1;
} else {
output[cursor++] = formatString[i];
}
}
print(output);
}
void PrintFormatter::stripVectorFormat(const char *format, char *stripped) {
while (*format != '\0') {
if (*format != 'v') {
*stripped = *format;
} else if (*(format + 1) != '1') {
format += 2;
continue;
} else {
format += 3;
continue;
}
stripped++;
format++;
}
*stripped = '\0';
}
void PrintFormatter::stripVectorTypeConversion(char *format) {
size_t len = strlen(format);
if (len > 3 && format[len - 3] == 'h' && format[len - 2] == 'l') {
format[len - 3] = format[len - 1];
format[len - 2] = '\0';
}
}
size_t PrintFormatter::printToken(char *output, size_t size, const char *formatString) {
PRINTF_DATA_TYPE type(PRINTF_DATA_TYPE::INVALID);
read(&type);
switch (type) {
case PRINTF_DATA_TYPE::BYTE:
return typedPrintToken<int8_t>(output, size, formatString);
case PRINTF_DATA_TYPE::SHORT:
return typedPrintToken<int16_t>(output, size, formatString);
case PRINTF_DATA_TYPE::INT:
return typedPrintToken<int>(output, size, formatString);
case PRINTF_DATA_TYPE::FLOAT:
return typedPrintToken<float>(output, size, formatString);
case PRINTF_DATA_TYPE::LONG:
return typedPrintToken<int64_t>(output, size, formatString);
case PRINTF_DATA_TYPE::POINTER:
return printPointerToken(output, size, formatString);
case PRINTF_DATA_TYPE::DOUBLE:
return typedPrintToken<double>(output, size, formatString);
case PRINTF_DATA_TYPE::VECTOR_BYTE:
return typedPrintVectorToken<int8_t>(output, size, formatString);
case PRINTF_DATA_TYPE::VECTOR_SHORT:
return typedPrintVectorToken<int16_t>(output, size, formatString);
case PRINTF_DATA_TYPE::VECTOR_INT:
return typedPrintVectorToken<int>(output, size, formatString);
case PRINTF_DATA_TYPE::VECTOR_LONG:
return typedPrintVectorToken<int64_t>(output, size, formatString);
case PRINTF_DATA_TYPE::VECTOR_FLOAT:
return typedPrintVectorToken<float>(output, size, formatString);
case PRINTF_DATA_TYPE::VECTOR_DOUBLE:
return typedPrintVectorToken<double>(output, size, formatString);
default:
return 0;
}
}
size_t PrintFormatter::printStringToken(char *output, size_t size, const char *formatString) {
int index = 0;
int type = 0;
// additional read to discard the token
read(&type);
read(&index);
if (type == static_cast<int>(PRINTF_DATA_TYPE::STRING)) {
return simple_sprintf(output, size, formatString, queryPrintfString(index));
} else {
return simple_sprintf(output, size, formatString, 0);
}
}
size_t PrintFormatter::printPointerToken(char *output, size_t size, const char *formatString) {
uint64_t value = {0};
read(&value);
if (using32BitPointers) {
value &= 0x00000000FFFFFFFF;
}
return simple_sprintf(output, size, formatString, value);
}
char PrintFormatter::escapeChar(char escape) {
switch (escape) {
case 'n':
return '\n';
default:
return escape;
}
}
bool PrintFormatter::isConversionSpecifier(char c) {
switch (c) {
case 'd':
case 'i':
case 'o':
case 'u':
case 'x':
case 'X':
case 'a':
case 'A':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
case 's':
case 'c':
case 'p':
return true;
default:
return false;
}
}
const char *PrintFormatter::queryPrintfString(uint32_t index) const {
auto stringEntry = stringLiteralMap.find(index);
return stringEntry == stringLiteralMap.end() ? nullptr : stringEntry->second.c_str();
}
} // namespace NEO
|