File: heap_allocator.h

package info (click to toggle)
intel-compute-runtime 20.44.18297-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 34,780 kB
  • sloc: cpp: 379,729; lisp: 4,931; python: 299; sh: 196; makefile: 8
file content (249 lines) | stat: -rw-r--r-- 8,207 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
 * Copyright (C) 2017-2020 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#pragma once
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/debug_helpers.h"

#include <algorithm>
#include <cstdint>
#include <unordered_map>
#include <vector>

namespace NEO {

struct HeapChunk {
    HeapChunk(uint64_t ptr, size_t size) : ptr(ptr), size(size) {}
    uint64_t ptr;
    size_t size;
};

bool operator<(const HeapChunk &hc1, const HeapChunk &hc2);

class HeapAllocator {
  public:
    HeapAllocator(uint64_t address, uint64_t size) : HeapAllocator(address, size, 4 * MemoryConstants::megaByte) {
    }

    HeapAllocator(uint64_t address, uint64_t size, size_t threshold) : size(size), availableSize(size), sizeThreshold(threshold) {
        pLeftBound = address;
        pRightBound = address + size;
        freedChunksBig.reserve(10);
        freedChunksSmall.reserve(50);
    }

    uint64_t allocate(size_t &sizeToAllocate) {
        sizeToAllocate = alignUp(sizeToAllocate, allocationAlignment);

        std::lock_guard<std::mutex> lock(mtx);
        DBG_LOG(PrintDebugMessages, __FUNCTION__, "Allocator usage == ", this->getUsage());
        if (availableSize < sizeToAllocate) {
            return 0llu;
        }

        std::vector<HeapChunk> &freedChunks = (sizeToAllocate > sizeThreshold) ? freedChunksBig : freedChunksSmall;
        uint32_t defragmentCount = 0;

        for (;;) {
            size_t sizeOfFreedChunk = 0;
            uint64_t ptrReturn = getFromFreedChunks(sizeToAllocate, freedChunks, sizeOfFreedChunk);

            if (ptrReturn == 0llu) {
                if (sizeToAllocate > sizeThreshold) {
                    if (pLeftBound + sizeToAllocate <= pRightBound) {
                        ptrReturn = pLeftBound;
                        pLeftBound += sizeToAllocate;
                    }
                } else {
                    if (pRightBound - sizeToAllocate >= pLeftBound) {
                        pRightBound -= sizeToAllocate;
                        ptrReturn = pRightBound;
                    }
                }
            }

            if (ptrReturn != 0llu) {
                if (sizeOfFreedChunk > 0) {
                    availableSize -= sizeOfFreedChunk;
                    sizeToAllocate = sizeOfFreedChunk;
                } else {
                    availableSize -= sizeToAllocate;
                }
                return ptrReturn;
            }

            if (defragmentCount == 1)
                return 0llu;
            defragment();
            defragmentCount++;
        }
    }

    void free(uint64_t ptr, size_t size) {
        if (ptr == 0llu)
            return;

        std::lock_guard<std::mutex> lock(mtx);
        DBG_LOG(PrintDebugMessages, __FUNCTION__, "Allocator usage == ", this->getUsage());

        if (ptr == pRightBound) {
            pRightBound = ptr + size;
            mergeLastFreedSmall();
        } else if (ptr == pLeftBound - size) {
            pLeftBound = ptr;
            mergeLastFreedBig();
        } else if (ptr < pLeftBound) {
            DEBUG_BREAK_IF(size <= sizeThreshold);
            storeInFreedChunks(ptr, size, freedChunksBig);
        } else {
            storeInFreedChunks(ptr, size, freedChunksSmall);
        }
        availableSize += size;
    }

    uint64_t getLeftSize() const {
        return availableSize;
    }

    uint64_t getUsedSize() const {
        return size - availableSize;
    }

    NO_SANITIZE
    double getUsage() const {
        return static_cast<double>(size - availableSize) / size;
    }

  protected:
    const uint64_t size;
    uint64_t availableSize;
    uint64_t pLeftBound;
    uint64_t pRightBound;
    const size_t sizeThreshold;
    size_t allocationAlignment = MemoryConstants::pageSize;

    std::vector<HeapChunk> freedChunksSmall;
    std::vector<HeapChunk> freedChunksBig;
    std::mutex mtx;

    uint64_t getFromFreedChunks(size_t size, std::vector<HeapChunk> &freedChunks, size_t &sizeOfFreedChunk) {
        size_t elements = freedChunks.size();
        size_t bestFitIndex = -1;
        size_t bestFitSize = 0;
        sizeOfFreedChunk = 0;

        for (size_t i = 0; i < elements; i++) {
            if (freedChunks[i].size == size) {
                auto ptr = freedChunks[i].ptr;
                freedChunks.erase(freedChunks.begin() + i);
                return ptr;
            }

            if (freedChunks[i].size > size) {
                if (freedChunks[i].size < bestFitSize || bestFitSize == 0) {
                    bestFitIndex = i;
                    bestFitSize = freedChunks[i].size;
                }
            }
        }

        if (bestFitSize != 0) {
            if (bestFitSize < (size << 1)) {
                auto ptr = freedChunks[bestFitIndex].ptr;
                sizeOfFreedChunk = freedChunks[bestFitIndex].size;
                freedChunks.erase(freedChunks.begin() + bestFitIndex);
                return ptr;
            } else {
                size_t sizeDelta = freedChunks[bestFitIndex].size - size;

                DEBUG_BREAK_IF(!(size <= sizeThreshold || (size > sizeThreshold && sizeDelta > sizeThreshold)));

                auto ptr = freedChunks[bestFitIndex].ptr + sizeDelta;
                freedChunks[bestFitIndex].size = sizeDelta;
                return ptr;
            }
        }
        return 0llu;
    }

    void storeInFreedChunks(uint64_t ptr, size_t size, std::vector<HeapChunk> &freedChunks) {
        for (auto &freedChunk : freedChunks) {
            if (freedChunk.ptr == ptr + size) {
                freedChunk.ptr = ptr;
                freedChunk.size += size;
                return;
            }
            if (freedChunk.ptr + freedChunk.size == ptr) {
                freedChunk.size += size;
                return;
            }
        }

        freedChunks.emplace_back(ptr, size);
    }

    void mergeLastFreedSmall() {
        size_t maxSizeOfSmallChunks = freedChunksSmall.size();

        if (maxSizeOfSmallChunks > 0) {
            auto ptr = freedChunksSmall[maxSizeOfSmallChunks - 1].ptr;
            size_t chunkSize = freedChunksSmall[maxSizeOfSmallChunks - 1].size;
            if (ptr == pRightBound) {
                pRightBound = ptr + chunkSize;
                freedChunksSmall.pop_back();
            }
        }
    }

    void mergeLastFreedBig() {
        size_t maxSizeOfBigChunks = freedChunksBig.size();

        if (maxSizeOfBigChunks > 0) {
            auto ptr = freedChunksBig[maxSizeOfBigChunks - 1].ptr;
            size_t chunkSize = freedChunksBig[maxSizeOfBigChunks - 1].size;
            if (ptr == pLeftBound - chunkSize) {
                pLeftBound = ptr;
                freedChunksBig.pop_back();
            }
        }
    }

    void defragment() {

        if (freedChunksSmall.size() > 1) {
            std::sort(freedChunksSmall.rbegin(), freedChunksSmall.rend());
            size_t maxSize = freedChunksSmall.size();
            for (size_t i = maxSize - 1; i > 0; --i) {
                auto ptr = freedChunksSmall[i].ptr;
                size_t chunkSize = freedChunksSmall[i].size;

                if (freedChunksSmall[i - 1].ptr == ptr + chunkSize) {
                    freedChunksSmall[i - 1].ptr = ptr;
                    freedChunksSmall[i - 1].size += chunkSize;
                    freedChunksSmall.erase(freedChunksSmall.begin() + i);
                }
            }
        }
        mergeLastFreedSmall();
        if (freedChunksBig.size() > 1) {
            std::sort(freedChunksBig.begin(), freedChunksBig.end());

            size_t maxSize = freedChunksBig.size();
            for (size_t i = maxSize - 1; i > 0; --i) {
                auto ptr = freedChunksBig[i].ptr;
                size_t chunkSize = freedChunksBig[i].size;
                if ((freedChunksBig[i - 1].ptr + freedChunksBig[i - 1].size) == ptr) {
                    freedChunksBig[i - 1].size += chunkSize;
                    freedChunksBig.erase(freedChunksBig.begin() + i);
                }
            }
        }
        mergeLastFreedBig();
        DBG_LOG(PrintDebugMessages, __FUNCTION__, "Allocator usage == ", this->getUsage());
    }
};
} // namespace NEO