1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/helpers/timestamp_packet.h"
#include <level_zero/ze_api.h>
#include <bitset>
#include <chrono>
#include <limits>
struct _ze_event_handle_t {};
struct _ze_event_pool_handle_t {};
namespace L0 {
typedef uint64_t FlushStamp;
struct EventPool;
struct MetricStreamer;
struct ContextImp;
struct Context;
struct DriverHandle;
struct Device;
namespace EventPacketsCount {
constexpr uint32_t maxKernelSplit = 3;
constexpr uint32_t eventPackets = maxKernelSplit * NEO ::TimestampPacketSizeControl::preferredPacketCount;
} // namespace EventPacketsCount
struct Event : _ze_event_handle_t {
virtual ~Event() = default;
virtual ze_result_t destroy();
virtual ze_result_t hostSignal() = 0;
virtual ze_result_t hostSynchronize(uint64_t timeout) = 0;
virtual ze_result_t queryStatus() = 0;
virtual ze_result_t reset() = 0;
virtual ze_result_t queryKernelTimestamp(ze_kernel_timestamp_result_t *dstptr) = 0;
virtual ze_result_t queryTimestampsExp(Device *device, uint32_t *pCount, ze_kernel_timestamp_result_t *pTimestamps) = 0;
enum State : uint32_t {
STATE_SIGNALED = 0u,
STATE_CLEARED = std::numeric_limits<uint32_t>::max(),
STATE_INITIAL = STATE_CLEARED
};
template <typename TagSizeT>
static Event *create(EventPool *eventPool, const ze_event_desc_t *desc, Device *device);
static Event *fromHandle(ze_event_handle_t handle) { return static_cast<Event *>(handle); }
inline ze_event_handle_t toHandle() { return this; }
virtual NEO::GraphicsAllocation &getAllocation(Device *device) = 0;
virtual uint64_t getGpuAddress(Device *device) = 0;
virtual uint32_t getPacketsInUse() = 0;
virtual uint32_t getPacketsUsedInLastKernel() = 0;
virtual uint64_t getPacketAddress(Device *device) = 0;
virtual void resetPackets() = 0;
void *getHostAddress() { return hostAddress; }
virtual void setPacketsInUse(uint32_t value) = 0;
uint32_t getCurrKernelDataIndex() const { return kernelCount - 1; }
virtual void setGpuStartTimestamp() = 0;
virtual void setGpuEndTimestamp() = 0;
size_t getContextStartOffset() const {
return contextStartOffset;
}
size_t getContextEndOffset() const {
return contextEndOffset;
}
size_t getGlobalStartOffset() const {
return globalStartOffset;
}
size_t getGlobalEndOffset() const {
return globalEndOffset;
}
size_t getSinglePacketSize() const {
return singlePacketSize;
}
size_t getTimestampSizeInDw() const {
return timestampSizeInDw;
}
void setEventTimestampFlag(bool timestampFlag) {
isTimestampEvent = timestampFlag;
}
bool isEventTimestampFlagSet() const {
return isTimestampEvent;
}
void setUsingContextEndOffset(bool usingContextEndOffset) {
this->usingContextEndOffset = usingContextEndOffset;
}
bool isUsingContextEndOffset() const {
return isTimestampEvent || usingContextEndOffset;
}
void setCsr(NEO::CommandStreamReceiver *csr) {
this->csr = csr;
}
void increaseKernelCount() {
kernelCount++;
UNRECOVERABLE_IF(kernelCount > EventPacketsCount::maxKernelSplit);
}
uint32_t getKernelCount() const {
return kernelCount;
}
void zeroKernelCount() {
kernelCount = 0;
}
bool getL3FlushForCurrenKernel() {
return l3FlushAppliedOnKernel.test(kernelCount - 1);
}
void setL3FlushForCurrentKernel() {
l3FlushAppliedOnKernel.set(kernelCount - 1);
}
void resetCompletion() {
this->isCompleted = false;
}
uint64_t globalStartTS;
uint64_t globalEndTS;
uint64_t contextStartTS;
uint64_t contextEndTS;
std::chrono::microseconds gpuHangCheckPeriod{500'000};
// Metric streamer instance associated with the event.
MetricStreamer *metricStreamer = nullptr;
NEO::CommandStreamReceiver *csr = nullptr;
void *hostAddress = nullptr;
ze_event_scope_flags_t signalScope = 0u;
ze_event_scope_flags_t waitScope = 0u;
protected:
std::bitset<EventPacketsCount::maxKernelSplit> l3FlushAppliedOnKernel;
size_t contextStartOffset = 0u;
size_t contextEndOffset = 0u;
size_t globalStartOffset = 0u;
size_t globalEndOffset = 0u;
size_t timestampSizeInDw = 0u;
size_t singlePacketSize = 0u;
size_t eventPoolOffset = 0u;
size_t cpuStartTimestamp = 0u;
size_t gpuStartTimestamp = 0u;
size_t gpuEndTimestamp = 0u;
uint32_t kernelCount = 1u;
bool isTimestampEvent = false;
bool usingContextEndOffset = false;
std::atomic<bool> isCompleted{false};
};
template <typename TagSizeT>
class KernelEventCompletionData : public NEO::TimestampPackets<TagSizeT> {
public:
uint32_t getPacketsUsed() const { return packetsUsed; }
void setPacketsUsed(uint32_t value) { packetsUsed = value; }
protected:
uint32_t packetsUsed = 1;
};
template <typename TagSizeT>
struct EventImp : public Event {
EventImp(EventPool *eventPool, int index, Device *device)
: device(device), index(index), eventPool(eventPool) {
contextStartOffset = NEO::TimestampPackets<TagSizeT>::getContextStartOffset();
contextEndOffset = NEO::TimestampPackets<TagSizeT>::getContextEndOffset();
globalStartOffset = NEO::TimestampPackets<TagSizeT>::getGlobalStartOffset();
globalEndOffset = NEO::TimestampPackets<TagSizeT>::getGlobalEndOffset();
timestampSizeInDw = (sizeof(TagSizeT) / 4);
singlePacketSize = NEO::TimestampPackets<TagSizeT>::getSinglePacketSize();
}
~EventImp() override {}
ze_result_t hostSignal() override;
ze_result_t hostSynchronize(uint64_t timeout) override;
ze_result_t queryStatus() override;
ze_result_t reset() override;
ze_result_t queryKernelTimestamp(ze_kernel_timestamp_result_t *dstptr) override;
ze_result_t queryTimestampsExp(Device *device, uint32_t *pCount, ze_kernel_timestamp_result_t *pTimestamps) override;
NEO::GraphicsAllocation &getAllocation(Device *device) override;
uint64_t getGpuAddress(Device *device) override;
void resetPackets() override;
void resetDeviceCompletionData();
uint64_t getPacketAddress(Device *device) override;
uint32_t getPacketsInUse() override;
uint32_t getPacketsUsedInLastKernel() override;
void setPacketsInUse(uint32_t value) override;
void setGpuStartTimestamp() override;
void setGpuEndTimestamp() override;
std::unique_ptr<KernelEventCompletionData<TagSizeT>[]> kernelEventCompletionData;
Device *device;
int index;
EventPool *eventPool;
protected:
ze_result_t calculateProfilingData();
ze_result_t queryStatusEventPackets();
MOCKABLE_VIRTUAL ze_result_t hostEventSetValue(TagSizeT eventValue);
ze_result_t hostEventSetValueTimestamps(TagSizeT eventVal);
MOCKABLE_VIRTUAL void assignKernelEventCompletionData(void *address);
};
struct EventPool : _ze_event_pool_handle_t {
static EventPool *create(DriverHandle *driver, Context *context, uint32_t numDevices, ze_device_handle_t *phDevices, const ze_event_pool_desc_t *desc, ze_result_t &result);
virtual ~EventPool() = default;
virtual ze_result_t destroy() = 0;
virtual ze_result_t getIpcHandle(ze_ipc_event_pool_handle_t *pIpcHandle) = 0;
virtual ze_result_t closeIpcHandle() = 0;
virtual ze_result_t createEvent(const ze_event_desc_t *desc, ze_event_handle_t *phEvent) = 0;
virtual Device *getDevice() = 0;
static EventPool *fromHandle(ze_event_pool_handle_t handle) {
return static_cast<EventPool *>(handle);
}
inline ze_event_pool_handle_t toHandle() { return this; }
virtual NEO::MultiGraphicsAllocation &getAllocation() { return *eventPoolAllocations; }
virtual uint32_t getEventSize() = 0;
virtual void setEventSize(uint32_t) = 0;
virtual void setEventAlignment(uint32_t) = 0;
bool isEventPoolTimestampFlagSet() {
if (NEO::DebugManager.flags.OverrideTimestampEvents.get() != -1) {
auto timestampOverride = !!NEO::DebugManager.flags.OverrideTimestampEvents.get();
return timestampOverride;
}
if (eventPoolFlags & ZE_EVENT_POOL_FLAG_KERNEL_TIMESTAMP) {
return true;
}
return false;
}
bool isEventPoolDeviceAllocationFlagSet() {
if (!(eventPoolFlags & ZE_EVENT_POOL_FLAG_HOST_VISIBLE)) {
return true;
}
return false;
}
std::unique_ptr<NEO::MultiGraphicsAllocation> eventPoolAllocations;
ze_event_pool_flags_t eventPoolFlags;
};
struct EventPoolImp : public EventPool {
EventPoolImp(const ze_event_pool_desc_t *desc) : numEvents(desc->count) {
eventPoolFlags = desc->flags;
}
ze_result_t initialize(DriverHandle *driver, Context *context, uint32_t numDevices, ze_device_handle_t *phDevices);
~EventPoolImp() override;
ze_result_t destroy() override;
ze_result_t getIpcHandle(ze_ipc_event_pool_handle_t *pIpcHandle) override;
ze_result_t closeIpcHandle() override;
ze_result_t createEvent(const ze_event_desc_t *desc, ze_event_handle_t *phEvent) override;
uint32_t getEventSize() override { return eventSize; }
void setEventSize(uint32_t size) override { eventSize = size; }
void setEventAlignment(uint32_t alignment) override { eventAlignment = alignment; }
size_t getNumEvents() { return numEvents; }
Device *getDevice() override { return devices[0]; }
void *eventPoolPtr = nullptr;
std::vector<Device *> devices;
ContextImp *context = nullptr;
size_t numEvents;
bool isImportedIpcPool = false;
bool isShareableEventMemory = false;
protected:
uint32_t eventAlignment = 0;
uint32_t eventSize = 0;
};
} // namespace L0
|