1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*
* Copyright (C) 2021-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/memory_manager/internal_allocation_storage.h"
#include "shared/source/os_interface/os_time.h"
#include "level_zero/core/source/event/event.h"
#include "level_zero/core/source/hw_helpers/l0_hw_helper.h"
namespace L0 {
template <typename TagSizeT>
Event *Event::create(EventPool *eventPool, const ze_event_desc_t *desc, Device *device) {
auto event = new EventImp<TagSizeT>(eventPool, desc->index, device);
UNRECOVERABLE_IF(event == nullptr);
if (eventPool->isEventPoolTimestampFlagSet()) {
event->setEventTimestampFlag(true);
}
auto neoDevice = device->getNEODevice();
event->kernelEventCompletionData = std::make_unique<KernelEventCompletionData<TagSizeT>[]>(EventPacketsCount::maxKernelSplit);
auto alloc = eventPool->getAllocation().getGraphicsAllocation(neoDevice->getRootDeviceIndex());
uint64_t baseHostAddr = reinterpret_cast<uint64_t>(alloc->getUnderlyingBuffer());
event->eventPoolOffset = desc->index * eventPool->getEventSize();
event->hostAddress = reinterpret_cast<void *>(baseHostAddr + event->eventPoolOffset);
event->signalScope = desc->signal;
event->waitScope = desc->wait;
event->csr = neoDevice->getDefaultEngine().commandStreamReceiver;
bool useContextEndOffset = L0HwHelper::get(neoDevice->getHardwareInfo().platform.eRenderCoreFamily).multiTileCapablePlatform();
int32_t overrideUseContextEndOffset = NEO::DebugManager.flags.UseContextEndOffsetForEventCompletion.get();
if (overrideUseContextEndOffset != -1) {
useContextEndOffset = !!overrideUseContextEndOffset;
}
event->setUsingContextEndOffset(useContextEndOffset);
EventPoolImp *eventPoolImp = static_cast<struct EventPoolImp *>(eventPool);
// do not reset even if it has been imported, since event pool
// might have been imported after events being already signaled
if (eventPoolImp->isImportedIpcPool == false) {
event->resetDeviceCompletionData();
}
return event;
}
template <typename TagSizeT>
uint64_t EventImp<TagSizeT>::getGpuAddress(Device *device) {
auto alloc = eventPool->getAllocation().getGraphicsAllocation(device->getNEODevice()->getRootDeviceIndex());
return (alloc->getGpuAddress() + this->eventPoolOffset);
}
template <typename TagSizeT>
NEO::GraphicsAllocation &EventImp<TagSizeT>::getAllocation(Device *device) {
return *this->eventPool->getAllocation().getGraphicsAllocation(device->getNEODevice()->getRootDeviceIndex());
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::calculateProfilingData() {
constexpr uint32_t skipL3EventPacketIndex = 2u;
globalStartTS = kernelEventCompletionData[0].getGlobalStartValue(0);
globalEndTS = kernelEventCompletionData[0].getGlobalEndValue(0);
contextStartTS = kernelEventCompletionData[0].getContextStartValue(0);
contextEndTS = kernelEventCompletionData[0].getContextEndValue(0);
auto getEndTS = [](bool &isOverflowed, const std::pair<uint64_t, uint64_t> &currTs, const uint64_t &end) {
auto &[currStartTs, currEndTs] = currTs;
if (isOverflowed == false) {
if (currEndTs < currStartTs) {
isOverflowed = true;
return currEndTs;
} else {
return std::max(end, currEndTs);
}
} else {
// if already overflowed, then track the endTs of new overflowing ones
if (currEndTs < currStartTs) {
return std::max(end, currEndTs);
}
}
return end;
};
bool isGlobalTsOverflowed = false;
bool isContextTsOverflowed = false;
for (uint32_t kernelId = 0; kernelId < kernelCount; kernelId++) {
const auto &eventCompletion = kernelEventCompletionData[kernelId];
for (auto packetId = 0u; packetId < eventCompletion.getPacketsUsed(); packetId++) {
if (this->l3FlushAppliedOnKernel.test(kernelId) && ((packetId % skipL3EventPacketIndex) != 0)) {
continue;
}
const std::pair<uint64_t, uint64_t> currentGlobal(eventCompletion.getGlobalStartValue(packetId),
eventCompletion.getGlobalEndValue(packetId));
const std::pair<uint64_t, uint64_t> currentContext(eventCompletion.getContextStartValue(packetId),
eventCompletion.getContextEndValue(packetId));
globalStartTS = std::min(globalStartTS, currentGlobal.first);
contextStartTS = std::min(contextStartTS, currentContext.first);
globalEndTS = getEndTS(isGlobalTsOverflowed, currentGlobal, globalEndTS);
contextEndTS = getEndTS(isContextTsOverflowed, currentContext, contextEndTS);
}
}
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
void EventImp<TagSizeT>::assignKernelEventCompletionData(void *address) {
for (uint32_t i = 0; i < kernelCount; i++) {
uint32_t packetsToCopy = 0;
packetsToCopy = kernelEventCompletionData[i].getPacketsUsed();
for (uint32_t packetId = 0; packetId < packetsToCopy; packetId++) {
kernelEventCompletionData[i].assignDataToAllTimestamps(packetId, address);
address = ptrOffset(address, singlePacketSize);
}
}
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::queryStatusEventPackets() {
assignKernelEventCompletionData(hostAddress);
uint32_t queryVal = Event::STATE_CLEARED;
for (uint32_t i = 0; i < kernelCount; i++) {
uint32_t packetsToCheck = kernelEventCompletionData[i].getPacketsUsed();
for (uint32_t packetId = 0; packetId < packetsToCheck; packetId++) {
void const *queryAddress = isUsingContextEndOffset()
? kernelEventCompletionData[i].getContextEndAddress(packetId)
: kernelEventCompletionData[i].getContextStartAddress(packetId);
bool ready = NEO::WaitUtils::waitFunctionWithPredicate<const TagSizeT>(
static_cast<TagSizeT const *>(queryAddress),
queryVal,
std::not_equal_to<TagSizeT>());
if (!ready) {
return ZE_RESULT_NOT_READY;
}
}
}
isCompleted = true;
this->csr->getInternalAllocationStorage()->cleanAllocationList(this->csr->peekTaskCount(), NEO::AllocationUsage::TEMPORARY_ALLOCATION);
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::queryStatus() {
if (metricStreamer != nullptr) {
TagSizeT *hostAddr = static_cast<TagSizeT *>(hostAddress);
if (usingContextEndOffset) {
hostAddr = ptrOffset(hostAddr, this->getContextEndOffset());
}
*hostAddr = metricStreamer->getNotificationState();
}
this->csr->downloadAllocations();
this->csr->downloadAllocation(*eventPool->getAllocation().getGraphicsAllocation(device->getNEODevice()->getRootDeviceIndex()));
if (isCompleted == true) {
return ZE_RESULT_SUCCESS;
} else {
return queryStatusEventPackets();
}
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::hostEventSetValueTimestamps(TagSizeT eventVal) {
auto baseAddr = castToUint64(hostAddress);
auto eventTsSetFunc = [](auto tsAddr, TagSizeT value) {
auto tsptr = reinterpret_cast<void *>(tsAddr);
memcpy_s(tsptr, sizeof(TagSizeT), static_cast<void *>(&value), sizeof(TagSizeT));
};
TagSizeT timestampStart = eventVal;
TagSizeT timestampEnd = eventVal;
if (eventVal == Event::STATE_SIGNALED) {
timestampStart = static_cast<TagSizeT>(this->gpuStartTimestamp);
timestampEnd = static_cast<TagSizeT>(this->gpuEndTimestamp);
}
for (uint32_t i = 0; i < kernelCount; i++) {
uint32_t packetsToSet = kernelEventCompletionData[i].getPacketsUsed();
for (uint32_t j = 0; j < packetsToSet; j++) {
eventTsSetFunc(baseAddr + contextStartOffset, timestampStart);
eventTsSetFunc(baseAddr + globalStartOffset, timestampStart);
eventTsSetFunc(baseAddr + contextEndOffset, timestampEnd);
eventTsSetFunc(baseAddr + globalEndOffset, timestampEnd);
baseAddr += singlePacketSize;
}
}
const auto dataSize = 4u * EventPacketsCount::maxKernelSplit * NEO::TimestampPacketSizeControl::preferredPacketCount;
TagSizeT tagValues[dataSize];
for (uint32_t index = 0u; index < dataSize; index++) {
tagValues[index] = eventVal;
}
assignKernelEventCompletionData(tagValues);
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::hostEventSetValue(TagSizeT eventVal) {
UNRECOVERABLE_IF(hostAddress == nullptr);
if (isEventTimestampFlagSet()) {
return hostEventSetValueTimestamps(eventVal);
}
auto packetHostAddr = hostAddress;
if (usingContextEndOffset) {
packetHostAddr = ptrOffset(packetHostAddr, contextEndOffset);
}
for (uint32_t i = 0; i < kernelCount; i++) {
uint32_t packetsToSet = kernelEventCompletionData[i].getPacketsUsed();
for (uint32_t j = 0; j < packetsToSet; j++) {
memcpy_s(packetHostAddr, sizeof(TagSizeT), static_cast<void *>(&eventVal), sizeof(TagSizeT));
packetHostAddr = ptrOffset(packetHostAddr, singlePacketSize);
}
}
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::hostSignal() {
auto status = hostEventSetValue(Event::STATE_SIGNALED);
if (status == ZE_RESULT_SUCCESS) {
isCompleted = true;
}
return status;
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::hostSynchronize(uint64_t timeout) {
std::chrono::microseconds elapsedTimeSinceGpuHangCheck{0};
std::chrono::high_resolution_clock::time_point waitStartTime, lastHangCheckTime, currentTime;
uint64_t timeDiff = 0;
ze_result_t ret = ZE_RESULT_NOT_READY;
if (this->csr->getType() == NEO::CommandStreamReceiverType::CSR_AUB) {
return ZE_RESULT_SUCCESS;
}
if (timeout == 0) {
return queryStatus();
}
waitStartTime = std::chrono::high_resolution_clock::now();
lastHangCheckTime = waitStartTime;
while (true) {
ret = queryStatus();
if (ret == ZE_RESULT_SUCCESS) {
return ret;
}
currentTime = std::chrono::high_resolution_clock::now();
elapsedTimeSinceGpuHangCheck = std::chrono::duration_cast<std::chrono::microseconds>(currentTime - lastHangCheckTime);
if (elapsedTimeSinceGpuHangCheck.count() >= this->gpuHangCheckPeriod.count()) {
lastHangCheckTime = currentTime;
if (this->csr->isGpuHangDetected()) {
return ZE_RESULT_ERROR_DEVICE_LOST;
}
}
if (timeout == std::numeric_limits<uint64_t>::max()) {
continue;
}
timeDiff = std::chrono::duration_cast<std::chrono::nanoseconds>(currentTime - waitStartTime).count();
if (timeDiff >= timeout) {
break;
}
}
return ret;
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::reset() {
this->resetCompletion();
this->resetDeviceCompletionData();
this->l3FlushAppliedOnKernel.reset();
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
void EventImp<TagSizeT>::resetDeviceCompletionData() {
this->kernelCount = EventPacketsCount::maxKernelSplit;
for (uint32_t i = 0; i < kernelCount; i++) {
this->kernelEventCompletionData[i].setPacketsUsed(NEO::TimestampPacketSizeControl::preferredPacketCount);
}
this->hostEventSetValue(Event::STATE_INITIAL);
this->resetPackets();
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::queryKernelTimestamp(ze_kernel_timestamp_result_t *dstptr) {
ze_kernel_timestamp_result_t &result = *dstptr;
if (queryStatus() != ZE_RESULT_SUCCESS) {
return ZE_RESULT_NOT_READY;
}
assignKernelEventCompletionData(hostAddress);
calculateProfilingData();
auto eventTsSetFunc = [&](uint64_t ×tampFieldToCopy, uint64_t ×tampFieldForWriting) {
memcpy_s(&(timestampFieldForWriting), sizeof(uint64_t), static_cast<void *>(×tampFieldToCopy), sizeof(uint64_t));
};
if (!NEO::HwHelper::get(device->getHwInfo().platform.eRenderCoreFamily).useOnlyGlobalTimestamps()) {
eventTsSetFunc(contextStartTS, result.context.kernelStart);
eventTsSetFunc(globalStartTS, result.global.kernelStart);
eventTsSetFunc(contextEndTS, result.context.kernelEnd);
eventTsSetFunc(globalEndTS, result.global.kernelEnd);
} else {
eventTsSetFunc(globalStartTS, result.context.kernelStart);
eventTsSetFunc(globalStartTS, result.global.kernelStart);
eventTsSetFunc(globalEndTS, result.context.kernelEnd);
eventTsSetFunc(globalEndTS, result.global.kernelEnd);
}
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
ze_result_t EventImp<TagSizeT>::queryTimestampsExp(Device *device, uint32_t *pCount, ze_kernel_timestamp_result_t *pTimestamps) {
uint32_t timestampPacket = 0;
uint64_t globalStartTs, globalEndTs, contextStartTs, contextEndTs;
globalStartTs = globalEndTs = contextStartTs = contextEndTs = Event::STATE_INITIAL;
auto deviceImp = static_cast<DeviceImp *>(device);
bool isStaticPartitioning = true;
if (NEO::DebugManager.flags.EnableStaticPartitioning.get() == 0) {
isStaticPartitioning = false;
}
if (!isStaticPartitioning) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
uint32_t numPacketsUsed = 1u;
if (!deviceImp->isSubdevice) {
numPacketsUsed = this->getPacketsInUse();
}
if ((*pCount == 0) ||
(*pCount > numPacketsUsed)) {
*pCount = numPacketsUsed;
return ZE_RESULT_SUCCESS;
}
for (auto i = 0u; i < *pCount; i++) {
ze_kernel_timestamp_result_t &result = *(pTimestamps + i);
auto queryTsEventAssignFunc = [&](uint64_t ×tampFieldForWriting, uint64_t ×tampFieldToCopy) {
memcpy_s(×tampFieldForWriting, sizeof(uint64_t), static_cast<void *>(×tampFieldToCopy), sizeof(uint64_t));
};
auto packetId = i;
if (deviceImp->isSubdevice) {
packetId = static_cast<NEO::SubDevice *>(deviceImp->getNEODevice())->getSubDeviceIndex();
}
globalStartTs = kernelEventCompletionData[timestampPacket].getGlobalStartValue(packetId);
contextStartTs = kernelEventCompletionData[timestampPacket].getContextStartValue(packetId);
contextEndTs = kernelEventCompletionData[timestampPacket].getContextEndValue(packetId);
globalEndTs = kernelEventCompletionData[timestampPacket].getGlobalEndValue(packetId);
queryTsEventAssignFunc(result.global.kernelStart, globalStartTs);
queryTsEventAssignFunc(result.context.kernelStart, contextStartTs);
queryTsEventAssignFunc(result.global.kernelEnd, globalEndTs);
queryTsEventAssignFunc(result.context.kernelEnd, contextEndTs);
}
return ZE_RESULT_SUCCESS;
}
template <typename TagSizeT>
void EventImp<TagSizeT>::resetPackets() {
for (uint32_t i = 0; i < kernelCount; i++) {
kernelEventCompletionData[i].setPacketsUsed(1);
}
kernelCount = 1;
cpuStartTimestamp = 0;
gpuStartTimestamp = 0;
gpuEndTimestamp = 0;
this->csr = this->device->getNEODevice()->getDefaultEngine().commandStreamReceiver;
}
template <typename TagSizeT>
uint32_t EventImp<TagSizeT>::getPacketsInUse() {
uint32_t packetsInUse = 0;
for (uint32_t i = 0; i < kernelCount; i++) {
packetsInUse += kernelEventCompletionData[i].getPacketsUsed();
}
return packetsInUse;
}
template <typename TagSizeT>
uint32_t EventImp<TagSizeT>::getPacketsUsedInLastKernel() {
return kernelEventCompletionData[getCurrKernelDataIndex()].getPacketsUsed();
}
template <typename TagSizeT>
void EventImp<TagSizeT>::setPacketsInUse(uint32_t value) {
kernelEventCompletionData[getCurrKernelDataIndex()].setPacketsUsed(value);
}
template <typename TagSizeT>
uint64_t EventImp<TagSizeT>::getPacketAddress(Device *device) {
uint64_t address = getGpuAddress(device);
for (uint32_t i = 0; i < kernelCount - 1; i++) {
address += kernelEventCompletionData[i].getPacketsUsed() *
singlePacketSize;
}
return address;
}
template <typename TagSizeT>
void EventImp<TagSizeT>::setGpuStartTimestamp() {
if (isEventTimestampFlagSet()) {
this->device->getGlobalTimestamps(&cpuStartTimestamp, &gpuStartTimestamp);
cpuStartTimestamp = cpuStartTimestamp / this->device->getNEODevice()->getDeviceInfo().outProfilingTimerResolution;
}
}
template <typename TagSizeT>
void EventImp<TagSizeT>::setGpuEndTimestamp() {
if (isEventTimestampFlagSet()) {
auto resolution = this->device->getNEODevice()->getDeviceInfo().outProfilingTimerResolution;
auto cpuEndTimestamp = this->device->getNEODevice()->getOSTime()->getCpuRawTimestamp() / resolution;
this->gpuEndTimestamp = gpuStartTimestamp + (cpuEndTimestamp - cpuStartTimestamp);
}
}
} // namespace L0
|