1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
|
/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/core/source/kernel/kernel_imp.h"
#include "shared/source/debugger/debugger_l0.h"
#include "shared/source/gmm_helper/gmm_helper.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/blit_commands_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/kernel_helpers.h"
#include "shared/source/helpers/local_work_size.h"
#include "shared/source/helpers/per_thread_data.h"
#include "shared/source/helpers/ray_tracing_helper.h"
#include "shared/source/helpers/register_offsets.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/surface_format_info.h"
#include "shared/source/kernel/implicit_args.h"
#include "shared/source/kernel/kernel_arg_descriptor.h"
#include "shared/source/kernel/kernel_descriptor.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/memory_operations_handler.h"
#include "shared/source/memory_manager/unified_memory_manager.h"
#include "shared/source/program/kernel_info.h"
#include "shared/source/utilities/arrayref.h"
#include "level_zero/core/source/device/device.h"
#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/core/source/driver/driver_handle_imp.h"
#include "level_zero/core/source/image/image.h"
#include "level_zero/core/source/image/image_format_desc_helper.h"
#include "level_zero/core/source/kernel/sampler_patch_values.h"
#include "level_zero/core/source/module/module.h"
#include "level_zero/core/source/module/module_imp.h"
#include "level_zero/core/source/printf_handler/printf_handler.h"
#include "level_zero/core/source/sampler/sampler.h"
#include "encode_surface_state_args.h"
#include <memory>
namespace L0 {
#include "level_zero/core/source/kernel/patch_with_implicit_surface.inl"
KernelImmutableData::KernelImmutableData(L0::Device *l0device) : device(l0device) {}
KernelImmutableData::~KernelImmutableData() {
if (nullptr != isaGraphicsAllocation) {
this->getDevice()->getNEODevice()->getMemoryManager()->freeGraphicsMemory(&*isaGraphicsAllocation);
isaGraphicsAllocation.release();
}
crossThreadDataTemplate.reset();
surfaceStateHeapTemplate.reset();
dynamicStateHeapTemplate.reset();
}
void KernelImmutableData::initialize(NEO::KernelInfo *kernelInfo, Device *device,
uint32_t computeUnitsUsedForSratch,
NEO::GraphicsAllocation *globalConstBuffer,
NEO::GraphicsAllocation *globalVarBuffer, bool internalKernel) {
UNRECOVERABLE_IF(kernelInfo == nullptr);
this->kernelInfo = kernelInfo;
this->kernelDescriptor = &kernelInfo->kernelDescriptor;
DeviceImp *deviceImp = static_cast<DeviceImp *>(device);
auto neoDevice = deviceImp->getActiveDevice();
auto memoryManager = neoDevice->getMemoryManager();
auto kernelIsaSize = kernelInfo->heapInfo.KernelHeapSize;
UNRECOVERABLE_IF(kernelIsaSize == 0);
UNRECOVERABLE_IF(!kernelInfo->heapInfo.pKernelHeap);
const auto allocType = internalKernel ? NEO::AllocationType::KERNEL_ISA_INTERNAL : NEO::AllocationType::KERNEL_ISA;
auto allocation = memoryManager->allocateGraphicsMemoryWithProperties(
{neoDevice->getRootDeviceIndex(), kernelIsaSize, allocType, neoDevice->getDeviceBitfield()});
UNRECOVERABLE_IF(allocation == nullptr);
isaGraphicsAllocation.reset(allocation);
if (neoDevice->getDebugger() && kernelInfo->kernelDescriptor.external.debugData.get()) {
createRelocatedDebugData(globalConstBuffer, globalVarBuffer);
}
this->crossThreadDataSize = this->kernelDescriptor->kernelAttributes.crossThreadDataSize;
ArrayRef<uint8_t> crossThreadDataArrayRef;
if (crossThreadDataSize != 0) {
crossThreadDataTemplate.reset(new uint8_t[crossThreadDataSize]);
if (kernelInfo->crossThreadData) {
memcpy_s(crossThreadDataTemplate.get(), crossThreadDataSize,
kernelInfo->crossThreadData, crossThreadDataSize);
} else {
memset(crossThreadDataTemplate.get(), 0x00, crossThreadDataSize);
}
crossThreadDataArrayRef = ArrayRef<uint8_t>(this->crossThreadDataTemplate.get(), this->crossThreadDataSize);
NEO::patchNonPointer<uint32_t>(crossThreadDataArrayRef,
kernelDescriptor->payloadMappings.implicitArgs.simdSize, kernelDescriptor->kernelAttributes.simdSize);
}
if (kernelInfo->heapInfo.SurfaceStateHeapSize != 0) {
this->surfaceStateHeapSize = kernelInfo->heapInfo.SurfaceStateHeapSize;
surfaceStateHeapTemplate.reset(new uint8_t[surfaceStateHeapSize]);
memcpy_s(surfaceStateHeapTemplate.get(), surfaceStateHeapSize,
kernelInfo->heapInfo.pSsh, surfaceStateHeapSize);
}
if (kernelInfo->heapInfo.DynamicStateHeapSize != 0) {
this->dynamicStateHeapSize = kernelInfo->heapInfo.DynamicStateHeapSize;
dynamicStateHeapTemplate.reset(new uint8_t[dynamicStateHeapSize]);
memcpy_s(dynamicStateHeapTemplate.get(), dynamicStateHeapSize,
kernelInfo->heapInfo.pDsh, dynamicStateHeapSize);
}
ArrayRef<uint8_t> surfaceStateHeapArrayRef = ArrayRef<uint8_t>(surfaceStateHeapTemplate.get(), getSurfaceStateHeapSize());
if (NEO::isValidOffset(kernelDescriptor->payloadMappings.implicitArgs.globalConstantsSurfaceAddress.stateless)) {
UNRECOVERABLE_IF(nullptr == globalConstBuffer);
patchWithImplicitSurface(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
static_cast<uintptr_t>(globalConstBuffer->getGpuAddressToPatch()),
*globalConstBuffer, kernelDescriptor->payloadMappings.implicitArgs.globalConstantsSurfaceAddress,
*neoDevice, kernelDescriptor->kernelAttributes.flags.useGlobalAtomics, deviceImp->isImplicitScalingCapable());
this->residencyContainer.push_back(globalConstBuffer);
} else if (nullptr != globalConstBuffer) {
this->residencyContainer.push_back(globalConstBuffer);
}
if (NEO::isValidOffset(kernelDescriptor->payloadMappings.implicitArgs.globalVariablesSurfaceAddress.stateless)) {
UNRECOVERABLE_IF(globalVarBuffer == nullptr);
patchWithImplicitSurface(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
static_cast<uintptr_t>(globalVarBuffer->getGpuAddressToPatch()),
*globalVarBuffer, kernelDescriptor->payloadMappings.implicitArgs.globalVariablesSurfaceAddress,
*neoDevice, kernelDescriptor->kernelAttributes.flags.useGlobalAtomics, deviceImp->isImplicitScalingCapable());
this->residencyContainer.push_back(globalVarBuffer);
} else if (nullptr != globalVarBuffer) {
this->residencyContainer.push_back(globalVarBuffer);
}
}
void KernelImmutableData::createRelocatedDebugData(NEO::GraphicsAllocation *globalConstBuffer,
NEO::GraphicsAllocation *globalVarBuffer) {
NEO::Linker::SegmentInfo globalData;
NEO::Linker::SegmentInfo constData;
if (globalVarBuffer) {
globalData.gpuAddress = globalVarBuffer->getGpuAddress();
globalData.segmentSize = globalVarBuffer->getUnderlyingBufferSize();
}
if (globalConstBuffer) {
constData.gpuAddress = globalConstBuffer->getGpuAddress();
constData.segmentSize = globalConstBuffer->getUnderlyingBufferSize();
}
if (kernelInfo->kernelDescriptor.external.debugData.get()) {
std::string outErrReason;
std::string outWarning;
auto decodedElf = NEO::Elf::decodeElf<NEO::Elf::EI_CLASS_64>(ArrayRef<const uint8_t>(reinterpret_cast<const uint8_t *>(kernelInfo->kernelDescriptor.external.debugData->vIsa),
kernelInfo->kernelDescriptor.external.debugData->vIsaSize),
outErrReason, outWarning);
if (decodedElf.getDebugInfoRelocations().size() > 1) {
UNRECOVERABLE_IF(kernelInfo->kernelDescriptor.external.relocatedDebugData.get() != nullptr);
auto size = kernelInfo->kernelDescriptor.external.debugData->vIsaSize;
kernelInfo->kernelDescriptor.external.relocatedDebugData = std::make_unique<uint8_t[]>(size);
memcpy_s(kernelInfo->kernelDescriptor.external.relocatedDebugData.get(), size, kernelInfo->kernelDescriptor.external.debugData->vIsa, kernelInfo->kernelDescriptor.external.debugData->vIsaSize);
NEO::Linker::SegmentInfo textSegment = {getIsaGraphicsAllocation()->getGpuAddress(),
getIsaGraphicsAllocation()->getUnderlyingBufferSize()};
NEO::Linker::applyDebugDataRelocations(decodedElf, ArrayRef<uint8_t>(kernelInfo->kernelDescriptor.external.relocatedDebugData.get(), size),
textSegment, globalData, constData);
}
}
}
ze_result_t KernelImp::getBaseAddress(uint64_t *baseAddress) {
if (baseAddress) {
auto gmmHelper = module->getDevice()->getNEODevice()->getGmmHelper();
*baseAddress = gmmHelper->decanonize(this->kernelImmData->getIsaGraphicsAllocation()->getGpuAddress());
}
return ZE_RESULT_SUCCESS;
}
uint32_t KernelImmutableData::getIsaSize() const {
return static_cast<uint32_t>(isaGraphicsAllocation->getUnderlyingBufferSize());
}
KernelImp::KernelImp(Module *module) : module(module) {}
KernelImp::~KernelImp() {
if (nullptr != privateMemoryGraphicsAllocation) {
module->getDevice()->getNEODevice()->getMemoryManager()->freeGraphicsMemory(privateMemoryGraphicsAllocation);
}
if (perThreadDataForWholeThreadGroup != nullptr) {
alignedFree(perThreadDataForWholeThreadGroup);
}
if (printfBuffer != nullptr) {
// not allowed to call virtual function on destructor, so calling printOutput directly
PrintfHandler::printOutput(kernelImmData, this->printfBuffer, module->getDevice());
module->getDevice()->getNEODevice()->getMemoryManager()->freeGraphicsMemory(printfBuffer);
}
slmArgSizes.clear();
crossThreadData.reset();
surfaceStateHeapData.reset();
dynamicStateHeapData.reset();
}
ze_result_t KernelImp::setArgumentValue(uint32_t argIndex, size_t argSize,
const void *pArgValue) {
if (argIndex >= kernelArgHandlers.size()) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
return (this->*kernelArgHandlers[argIndex])(argIndex, argSize, pArgValue);
}
void KernelImp::setGroupCount(uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) {
const NEO::KernelDescriptor &desc = kernelImmData->getDescriptor();
uint32_t globalWorkSize[3] = {groupCountX * groupSize[0], groupCountY * groupSize[1],
groupCountZ * groupSize[2]};
auto dst = ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize);
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.globalWorkSize, globalWorkSize);
uint32_t groupCount[3] = {groupCountX, groupCountY, groupCountZ};
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.numWorkGroups, groupCount);
uint32_t workDim = 1;
if (groupCountZ * groupSize[2] > 1) {
workDim = 3;
} else if (groupCountY * groupSize[1] > 1) {
workDim = 2;
}
auto workDimOffset = desc.payloadMappings.dispatchTraits.workDim;
if (NEO::isValidOffset(workDimOffset)) {
auto destinationBuffer = ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize);
NEO::patchNonPointer<uint32_t, uint32_t>(destinationBuffer, desc.payloadMappings.dispatchTraits.workDim, workDim);
}
if (pImplicitArgs) {
pImplicitArgs->numWorkDim = workDim;
pImplicitArgs->globalSizeX = globalWorkSize[0];
pImplicitArgs->globalSizeY = globalWorkSize[1];
pImplicitArgs->globalSizeZ = globalWorkSize[2];
pImplicitArgs->groupCountX = groupCount[0];
pImplicitArgs->groupCountY = groupCount[1];
pImplicitArgs->groupCountZ = groupCount[2];
}
}
ze_result_t KernelImp::setGroupSize(uint32_t groupSizeX, uint32_t groupSizeY,
uint32_t groupSizeZ) {
if ((0 == groupSizeX) || (0 == groupSizeY) || (0 == groupSizeZ)) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
auto numChannels = kernelImmData->getDescriptor().kernelAttributes.numLocalIdChannels;
Vec3<size_t> groupSize{groupSizeX, groupSizeY, groupSizeZ};
auto itemsInGroup = Math::computeTotalElementsCount(groupSize);
if (itemsInGroup > module->getMaxGroupSize()) {
DEBUG_BREAK_IF(true);
return ZE_RESULT_ERROR_INVALID_GROUP_SIZE_DIMENSION;
}
this->groupSize[0] = groupSizeX;
this->groupSize[1] = groupSizeY;
this->groupSize[2] = groupSizeZ;
const NEO::KernelDescriptor &kernelDescriptor = kernelImmData->getDescriptor();
for (uint32_t i = 0u; i < 3u; i++) {
if (kernelDescriptor.kernelAttributes.requiredWorkgroupSize[i] != 0 &&
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[i] != this->groupSize[i]) {
NEO::printDebugString(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr,
"Invalid group size {%d, %d, %d} specified, requiredWorkGroupSize = {%d, %d, %d}\n",
this->groupSize[0], this->groupSize[1], this->groupSize[2],
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[0],
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[1],
kernelDescriptor.kernelAttributes.requiredWorkgroupSize[2]);
return ZE_RESULT_ERROR_INVALID_GROUP_SIZE_DIMENSION;
}
}
auto simdSize = kernelDescriptor.kernelAttributes.simdSize;
this->numThreadsPerThreadGroup = static_cast<uint32_t>((itemsInGroup + simdSize - 1u) / simdSize);
patchWorkgroupSizeInCrossThreadData(groupSizeX, groupSizeY, groupSizeZ);
auto remainderSimdLanes = itemsInGroup & (simdSize - 1u);
threadExecutionMask = static_cast<uint32_t>(maxNBitValue(remainderSimdLanes));
if (!threadExecutionMask) {
threadExecutionMask = static_cast<uint32_t>(maxNBitValue((simdSize == 1) ? 32 : simdSize));
}
evaluateIfRequiresGenerationOfLocalIdsByRuntime(kernelDescriptor);
if (kernelRequiresGenerationOfLocalIdsByRuntime) {
auto grfSize = this->module->getDevice()->getHwInfo().capabilityTable.grfSize;
uint32_t perThreadDataSizeForWholeThreadGroupNeeded =
static_cast<uint32_t>(NEO::PerThreadDataHelper::getPerThreadDataSizeTotal(
simdSize, grfSize, numChannels, itemsInGroup));
if (perThreadDataSizeForWholeThreadGroupNeeded >
perThreadDataSizeForWholeThreadGroupAllocated) {
alignedFree(perThreadDataForWholeThreadGroup);
perThreadDataForWholeThreadGroup = static_cast<uint8_t *>(alignedMalloc(perThreadDataSizeForWholeThreadGroupNeeded, 32));
perThreadDataSizeForWholeThreadGroupAllocated = perThreadDataSizeForWholeThreadGroupNeeded;
}
perThreadDataSizeForWholeThreadGroup = perThreadDataSizeForWholeThreadGroupNeeded;
if (numChannels > 0) {
UNRECOVERABLE_IF(3 != numChannels);
NEO::generateLocalIDs(
perThreadDataForWholeThreadGroup,
static_cast<uint16_t>(simdSize),
std::array<uint16_t, 3>{{static_cast<uint16_t>(groupSizeX),
static_cast<uint16_t>(groupSizeY),
static_cast<uint16_t>(groupSizeZ)}},
std::array<uint8_t, 3>{{0, 1, 2}},
false, grfSize);
}
this->perThreadDataSize = perThreadDataSizeForWholeThreadGroup / numThreadsPerThreadGroup;
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::suggestGroupSize(uint32_t globalSizeX, uint32_t globalSizeY,
uint32_t globalSizeZ, uint32_t *groupSizeX,
uint32_t *groupSizeY, uint32_t *groupSizeZ) {
size_t retGroupSize[3] = {};
auto maxWorkGroupSize = module->getMaxGroupSize();
auto simd = kernelImmData->getDescriptor().kernelAttributes.simdSize;
size_t workItems[3] = {globalSizeX, globalSizeY, globalSizeZ};
uint32_t dim = (globalSizeY > 1U) ? 2 : 1U;
dim = (globalSizeZ > 1U) ? 3 : dim;
if (NEO::DebugManager.flags.EnableComputeWorkSizeND.get()) {
auto usesImages = getImmutableData()->getDescriptor().kernelAttributes.flags.usesImages;
auto neoDevice = module->getDevice()->getNEODevice();
const auto hwInfo = &neoDevice->getHardwareInfo();
const auto &deviceInfo = neoDevice->getDeviceInfo();
uint32_t numThreadsPerSubSlice = (uint32_t)deviceInfo.maxNumEUsPerSubSlice * deviceInfo.numThreadsPerEU;
uint32_t localMemSize = (uint32_t)deviceInfo.localMemSize;
if (this->getSlmTotalSize() > 0 && localMemSize < this->getSlmTotalSize()) {
PRINT_DEBUG_STRING(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr, "Size of SLM (%u) larger than available (%u)\n", this->getSlmTotalSize(), localMemSize);
return ZE_RESULT_ERROR_OUT_OF_DEVICE_MEMORY;
}
NEO::WorkSizeInfo wsInfo(maxWorkGroupSize, kernelImmData->getDescriptor().kernelAttributes.usesBarriers(), simd, this->getSlmTotalSize(),
hwInfo, numThreadsPerSubSlice, localMemSize,
usesImages, false, kernelImmData->getDescriptor().kernelAttributes.flags.requiresDisabledEUFusion);
NEO::computeWorkgroupSizeND(wsInfo, retGroupSize, workItems, dim);
} else {
if (1U == dim) {
NEO::computeWorkgroupSize1D(maxWorkGroupSize, retGroupSize, workItems, simd);
} else if (NEO::DebugManager.flags.EnableComputeWorkSizeSquared.get() && (2U == dim)) {
NEO::computeWorkgroupSizeSquared(maxWorkGroupSize, retGroupSize, workItems, simd, dim);
} else {
NEO::computeWorkgroupSize2D(maxWorkGroupSize, retGroupSize, workItems, simd);
}
}
*groupSizeX = static_cast<uint32_t>(retGroupSize[0]);
*groupSizeY = static_cast<uint32_t>(retGroupSize[1]);
*groupSizeZ = static_cast<uint32_t>(retGroupSize[2]);
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::suggestMaxCooperativeGroupCount(uint32_t *totalGroupCount, NEO::EngineGroupType engineGroupType,
bool isEngineInstanced) {
UNRECOVERABLE_IF(0 == groupSize[0]);
UNRECOVERABLE_IF(0 == groupSize[1]);
UNRECOVERABLE_IF(0 == groupSize[2]);
auto &hardwareInfo = module->getDevice()->getHwInfo();
auto dssCount = hardwareInfo.gtSystemInfo.DualSubSliceCount;
if (dssCount == 0) {
dssCount = hardwareInfo.gtSystemInfo.SubSliceCount;
}
auto &hwHelper = NEO::HwHelper::get(hardwareInfo.platform.eRenderCoreFamily);
auto &descriptor = kernelImmData->getDescriptor();
auto availableThreadCount = hwHelper.calculateAvailableThreadCount(hardwareInfo, descriptor.kernelAttributes.numGrfRequired);
auto barrierCount = descriptor.kernelAttributes.barrierCount;
const uint32_t workDim = 3;
const size_t localWorkSize[] = {groupSize[0], groupSize[1], groupSize[2]};
*totalGroupCount = NEO::KernelHelper::getMaxWorkGroupCount(descriptor.kernelAttributes.simdSize,
availableThreadCount,
dssCount,
dssCount * KB * hardwareInfo.capabilityTable.slmSize,
hwHelper.alignSlmSize(slmArgsTotalSize + descriptor.kernelAttributes.slmInlineSize),
static_cast<uint32_t>(hwHelper.getMaxBarrierRegisterPerSlice()),
barrierCount,
workDim,
localWorkSize);
*totalGroupCount = hwHelper.adjustMaxWorkGroupCount(*totalGroupCount, engineGroupType, hardwareInfo, isEngineInstanced);
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setIndirectAccess(ze_kernel_indirect_access_flags_t flags) {
if (NEO::DebugManager.flags.DisableIndirectAccess.get() == 1 || this->kernelHasIndirectAccess == false) {
return ZE_RESULT_SUCCESS;
}
if (flags & ZE_KERNEL_INDIRECT_ACCESS_FLAG_DEVICE) {
this->unifiedMemoryControls.indirectDeviceAllocationsAllowed = true;
}
if (flags & ZE_KERNEL_INDIRECT_ACCESS_FLAG_HOST) {
this->unifiedMemoryControls.indirectHostAllocationsAllowed = true;
}
if (flags & ZE_KERNEL_INDIRECT_ACCESS_FLAG_SHARED) {
this->unifiedMemoryControls.indirectSharedAllocationsAllowed = true;
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getIndirectAccess(ze_kernel_indirect_access_flags_t *flags) {
*flags = 0;
if (this->unifiedMemoryControls.indirectDeviceAllocationsAllowed) {
*flags |= ZE_KERNEL_INDIRECT_ACCESS_FLAG_DEVICE;
}
if (this->unifiedMemoryControls.indirectHostAllocationsAllowed) {
*flags |= ZE_KERNEL_INDIRECT_ACCESS_FLAG_HOST;
}
if (this->unifiedMemoryControls.indirectSharedAllocationsAllowed) {
*flags |= ZE_KERNEL_INDIRECT_ACCESS_FLAG_SHARED;
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getSourceAttributes(uint32_t *pSize, char **pString) {
auto &desc = kernelImmData->getDescriptor();
if (pString == nullptr) {
*pSize = (uint32_t)desc.kernelMetadata.kernelLanguageAttributes.length() + 1;
} else {
strncpy_s(*pString, *pSize,
desc.kernelMetadata.kernelLanguageAttributes.c_str(),
desc.kernelMetadata.kernelLanguageAttributes.length());
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgImmediate(uint32_t argIndex, size_t argSize, const void *argVal) {
if (kernelImmData->getDescriptor().payloadMappings.explicitArgs.size() <= argIndex) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
const auto &arg = kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex];
for (const auto &element : arg.as<NEO::ArgDescValue>().elements) {
if (element.sourceOffset < argSize) {
size_t maxBytesToCopy = argSize - element.sourceOffset;
size_t bytesToCopy = std::min(static_cast<size_t>(element.size), maxBytesToCopy);
auto pDst = ptrOffset(crossThreadData.get(), element.offset);
if (argVal) {
auto pSrc = ptrOffset(argVal, element.sourceOffset);
memcpy_s(pDst, element.size, pSrc, bytesToCopy);
} else {
uint64_t val = 0;
memcpy_s(pDst, element.size,
reinterpret_cast<void *>(&val), bytesToCopy);
}
} else {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgRedescribedImage(uint32_t argIndex, ze_image_handle_t argVal) {
const auto &arg = kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescImage>();
if (argVal == nullptr) {
residencyContainer[argIndex] = nullptr;
return ZE_RESULT_SUCCESS;
}
const auto image = Image::fromHandle(argVal);
image->copyRedescribedSurfaceStateToSSH(surfaceStateHeapData.get(), arg.bindful);
residencyContainer[argIndex] = image->getAllocation();
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgBufferWithAlloc(uint32_t argIndex, uintptr_t argVal, NEO::GraphicsAllocation *allocation) {
const auto &arg = kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescPointer>();
const auto val = argVal;
NEO::patchPointer(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg, val);
if (NEO::isValidOffset(arg.bindful) || NEO::isValidOffset(arg.bindless)) {
setBufferSurfaceState(argIndex, reinterpret_cast<void *>(val), allocation);
}
auto allocData = this->module->getDevice()->getDriverHandle()->getSvmAllocsManager()->getSVMAlloc(reinterpret_cast<void *>(allocation->getGpuAddress()));
if (allocData) {
bool argWasUncacheable = isArgUncached[argIndex];
bool argIsUncacheable = allocData->allocationFlagsProperty.flags.locallyUncachedResource;
if (argWasUncacheable == false && argIsUncacheable) {
kernelRequiresUncachedMocsCount++;
} else if (argWasUncacheable && argIsUncacheable == false) {
kernelRequiresUncachedMocsCount--;
}
this->setKernelArgUncached(argIndex, argIsUncacheable);
}
residencyContainer[argIndex] = allocation;
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgUnknown(uint32_t argIndex, size_t argSize, const void *argVal) {
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgBuffer(uint32_t argIndex, size_t argSize, const void *argVal) {
const auto device = static_cast<DeviceImp *>(this->module->getDevice());
const auto driverHandle = static_cast<DriverHandleImp *>(device->getDriverHandle());
const auto svmAllocsManager = driverHandle->getSvmAllocsManager();
const auto allocationsCounter = svmAllocsManager->allocationsCounter.load();
const auto &argInfo = this->kernelArgInfos[argIndex];
NEO::SvmAllocationData *allocData = nullptr;
if (argVal != nullptr) {
const auto requestedAddress = *reinterpret_cast<void *const *>(argVal);
if (argInfo.allocId > 0 &&
argInfo.allocId < NEO::SvmAllocationData::uninitializedAllocId &&
requestedAddress == argInfo.value) {
bool reuseFromCache = false;
if (allocationsCounter > 0) {
if (allocationsCounter == argInfo.allocIdMemoryManagerCounter) {
reuseFromCache = true;
} else {
allocData = svmAllocsManager->getSVMAlloc(requestedAddress);
if (allocData && allocData->getAllocId() == argInfo.allocId) {
reuseFromCache = true;
this->kernelArgInfos[argIndex].allocIdMemoryManagerCounter = allocationsCounter;
}
}
if (reuseFromCache) {
return ZE_RESULT_SUCCESS;
}
}
}
} else {
if (argInfo.isSetToNullptr) {
return ZE_RESULT_SUCCESS;
}
}
const auto &allArgs = kernelImmData->getDescriptor().payloadMappings.explicitArgs;
const auto &currArg = allArgs[argIndex];
if (currArg.getTraits().getAddressQualifier() == NEO::KernelArgMetadata::AddrLocal) {
slmArgSizes[argIndex] = static_cast<uint32_t>(argSize);
kernelArgInfos[argIndex] = KernelArgInfo{nullptr, 0, 0, false};
UNRECOVERABLE_IF(NEO::isUndefinedOffset(currArg.as<NEO::ArgDescPointer>().slmOffset));
auto slmOffset = *reinterpret_cast<uint32_t *>(crossThreadData.get() + currArg.as<NEO::ArgDescPointer>().slmOffset);
slmOffset += static_cast<uint32_t>(argSize);
++argIndex;
while (argIndex < kernelImmData->getDescriptor().payloadMappings.explicitArgs.size()) {
if (allArgs[argIndex].getTraits().getAddressQualifier() != NEO::KernelArgMetadata::AddrLocal) {
++argIndex;
continue;
}
const auto &nextArg = allArgs[argIndex].as<NEO::ArgDescPointer>();
UNRECOVERABLE_IF(0 == nextArg.requiredSlmAlignment);
slmOffset = alignUp<uint32_t>(slmOffset, nextArg.requiredSlmAlignment);
NEO::patchNonPointer<uint32_t, uint32_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), nextArg.slmOffset, slmOffset);
slmOffset += static_cast<uint32_t>(slmArgSizes[argIndex]);
++argIndex;
}
slmArgsTotalSize = static_cast<uint32_t>(alignUp(slmOffset, KB));
return ZE_RESULT_SUCCESS;
}
if (nullptr == argVal) {
residencyContainer[argIndex] = nullptr;
const auto &arg = kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescPointer>();
uintptr_t nullBufferValue = 0;
NEO::patchPointer(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg, nullBufferValue);
kernelArgInfos[argIndex] = KernelArgInfo{nullptr, 0, 0, true};
return ZE_RESULT_SUCCESS;
}
const auto requestedAddress = *reinterpret_cast<void *const *>(argVal);
uintptr_t gpuAddress = 0u;
NEO::GraphicsAllocation *alloc = driverHandle->getDriverSystemMemoryAllocation(requestedAddress,
1u,
module->getDevice()->getRootDeviceIndex(),
&gpuAddress);
if (allocData == nullptr) {
allocData = svmAllocsManager->getSVMAlloc(requestedAddress);
}
if (driverHandle->isRemoteResourceNeeded(requestedAddress, alloc, allocData, device)) {
if (allocData == nullptr) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
uint64_t pbase = allocData->gpuAllocations.getDefaultGraphicsAllocation()->getGpuAddress();
uint64_t offset = (uint64_t)requestedAddress - pbase;
alloc = driverHandle->getPeerAllocation(device, allocData, reinterpret_cast<void *>(pbase), &gpuAddress);
if (alloc == nullptr) {
return ZE_RESULT_ERROR_INVALID_ARGUMENT;
}
gpuAddress += offset;
}
const uint32_t allocId = allocData ? allocData->getAllocId() : 0u;
kernelArgInfos[argIndex] = KernelArgInfo{requestedAddress, allocId, allocationsCounter, false};
return setArgBufferWithAlloc(argIndex, gpuAddress, alloc);
}
ze_result_t KernelImp::setArgImage(uint32_t argIndex, size_t argSize, const void *argVal) {
if (argVal == nullptr) {
residencyContainer[argIndex] = nullptr;
return ZE_RESULT_SUCCESS;
}
const auto &hwInfo = module->getDevice()->getNEODevice()->getHardwareInfo();
auto isMediaBlockImage = (hwInfo.capabilityTable.supportsMediaBlock &&
kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex].getExtendedTypeInfo().isMediaBlockImage);
const auto &arg = kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescImage>();
const auto image = Image::fromHandle(*static_cast<const ze_image_handle_t *>(argVal));
if (kernelImmData->getDescriptor().kernelAttributes.imageAddressingMode == NEO::KernelDescriptor::Bindless) {
image->copySurfaceStateToSSH(patchBindlessSurfaceState(image->getAllocation(), arg.bindless), 0u, isMediaBlockImage);
} else {
image->copySurfaceStateToSSH(surfaceStateHeapData.get(), arg.bindful, isMediaBlockImage);
}
residencyContainer[argIndex] = image->getAllocation();
auto imageInfo = image->getImageInfo();
auto clChannelType = getClChannelDataType(image->getImageDesc().format);
auto clChannelOrder = getClChannelOrder(image->getImageDesc().format);
// If the Module was built from a SPIRv, then the supported channel data type must be in the CL types otherwise it is unsupported.
ModuleImp *moduleImp = reinterpret_cast<ModuleImp *>(this->module);
if (moduleImp->isSPIRv()) {
if (static_cast<int>(clChannelType) == CL_INVALID_VALUE) {
return ZE_RESULT_ERROR_UNSUPPORTED_IMAGE_FORMAT;
}
}
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.imgWidth, imageInfo.imgDesc.imageWidth);
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.imgHeight, imageInfo.imgDesc.imageHeight);
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.imgDepth, imageInfo.imgDesc.imageDepth);
NEO::patchNonPointer<uint32_t, uint32_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.numSamples, imageInfo.imgDesc.numSamples);
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.arraySize, imageInfo.imgDesc.imageArraySize);
NEO::patchNonPointer<cl_channel_type, cl_channel_type>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.channelDataType, clChannelType);
NEO::patchNonPointer<cl_channel_order, cl_channel_order>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.channelOrder, clChannelOrder);
NEO::patchNonPointer<uint32_t, uint32_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.numMipLevels, imageInfo.imgDesc.numMipLevels);
auto pixelSize = imageInfo.surfaceFormat->ImageElementSizeInBytes;
NEO::patchNonPointer<uint64_t, uint64_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.flatBaseOffset, image->getAllocation()->getGpuAddress());
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.flatWidth, (imageInfo.imgDesc.imageWidth * pixelSize) - 1u);
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.flatHeight, (imageInfo.imgDesc.imageHeight * pixelSize) - 1u);
NEO::patchNonPointer<uint32_t, size_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.flatPitch, imageInfo.imgDesc.imageRowPitch - 1u);
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::setArgSampler(uint32_t argIndex, size_t argSize, const void *argVal) {
const auto &arg = kernelImmData->getDescriptor().payloadMappings.explicitArgs[argIndex].as<NEO::ArgDescSampler>();
const auto sampler = Sampler::fromHandle(*static_cast<const ze_sampler_handle_t *>(argVal));
sampler->copySamplerStateToDSH(dynamicStateHeapData.get(), dynamicStateHeapDataSize, arg.bindful);
auto samplerDesc = sampler->getSamplerDesc();
NEO::patchNonPointer<uint32_t, uint32_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.samplerSnapWa, (samplerDesc.addressMode == ZE_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER && samplerDesc.filterMode == ZE_SAMPLER_FILTER_MODE_NEAREST) ? std::numeric_limits<uint32_t>::max() : 0u);
NEO::patchNonPointer<uint32_t, uint32_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.samplerAddressingMode, static_cast<uint32_t>(getAddrMode(samplerDesc.addressMode)));
NEO::patchNonPointer<uint32_t, uint32_t>(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize), arg.metadataPayload.samplerNormalizedCoords, samplerDesc.isNormalized ? static_cast<uint32_t>(SamplerPatchValues::NormalizedCoordsTrue) : static_cast<uint32_t>(SamplerPatchValues::NormalizedCoordsFalse));
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getKernelName(size_t *pSize, char *pName) {
size_t kernelNameSize = this->kernelImmData->getDescriptor().kernelMetadata.kernelName.size() + 1;
if (0 == *pSize || nullptr == pName) {
*pSize = kernelNameSize;
return ZE_RESULT_SUCCESS;
}
*pSize = std::min(*pSize, kernelNameSize);
strncpy_s(pName, *pSize,
this->kernelImmData->getDescriptor().kernelMetadata.kernelName.c_str(),
this->kernelImmData->getDescriptor().kernelMetadata.kernelName.size());
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getProperties(ze_kernel_properties_t *pKernelProperties) {
const auto &kernelDescriptor = this->kernelImmData->getDescriptor();
pKernelProperties->numKernelArgs = static_cast<uint32_t>(kernelDescriptor.payloadMappings.explicitArgs.size());
pKernelProperties->requiredGroupSizeX = kernelDescriptor.kernelAttributes.requiredWorkgroupSize[0];
pKernelProperties->requiredGroupSizeY = kernelDescriptor.kernelAttributes.requiredWorkgroupSize[1];
pKernelProperties->requiredGroupSizeZ = kernelDescriptor.kernelAttributes.requiredWorkgroupSize[2];
pKernelProperties->requiredNumSubGroups = kernelDescriptor.kernelMetadata.compiledSubGroupsNumber;
pKernelProperties->requiredSubgroupSize = kernelDescriptor.kernelMetadata.requiredSubGroupSize;
pKernelProperties->maxSubgroupSize = kernelDescriptor.kernelAttributes.simdSize;
pKernelProperties->localMemSize = kernelDescriptor.kernelAttributes.slmInlineSize;
pKernelProperties->privateMemSize = kernelDescriptor.kernelAttributes.perHwThreadPrivateMemorySize;
pKernelProperties->spillMemSize = kernelDescriptor.kernelAttributes.perThreadScratchSize[0];
memset(pKernelProperties->uuid.kid, 0, ZE_MAX_KERNEL_UUID_SIZE);
memset(pKernelProperties->uuid.mid, 0, ZE_MAX_MODULE_UUID_SIZE);
uint32_t maxKernelWorkGroupSize = static_cast<uint32_t>(this->module->getDevice()->getNEODevice()->getDeviceInfo().maxWorkGroupSize);
pKernelProperties->maxNumSubgroups = maxKernelWorkGroupSize / kernelDescriptor.kernelAttributes.simdSize;
void *pNext = pKernelProperties->pNext;
while (pNext) {
ze_base_desc_t *extendedProperties = reinterpret_cast<ze_base_desc_t *>(pKernelProperties->pNext);
if (extendedProperties->stype == ZE_STRUCTURE_TYPE_KERNEL_PREFERRED_GROUP_SIZE_PROPERTIES) {
ze_kernel_preferred_group_size_properties_t *preferredGroupSizeProperties =
reinterpret_cast<ze_kernel_preferred_group_size_properties_t *>(extendedProperties);
preferredGroupSizeProperties->preferredMultiple = this->kernelImmData->getKernelInfo()->getMaxSimdSize();
auto &hwHelper = NEO::HwHelper::get(this->module->getDevice()->getHwInfo().platform.eRenderCoreFamily);
if (hwHelper.isFusedEuDispatchEnabled(this->module->getDevice()->getHwInfo(), kernelDescriptor.kernelAttributes.flags.requiresDisabledEUFusion)) {
preferredGroupSizeProperties->preferredMultiple *= 2;
}
}
pNext = const_cast<void *>(extendedProperties->pNext);
}
return ZE_RESULT_SUCCESS;
}
NEO::GraphicsAllocation *KernelImp::allocatePrivateMemoryGraphicsAllocation() {
auto &kernelAttributes = kernelImmData->getDescriptor().kernelAttributes;
auto neoDevice = module->getDevice()->getNEODevice();
auto privateSurfaceSize = NEO::KernelHelper::getPrivateSurfaceSize(kernelAttributes.perHwThreadPrivateMemorySize,
neoDevice->getDeviceInfo().computeUnitsUsedForScratch);
UNRECOVERABLE_IF(privateSurfaceSize == 0);
auto privateMemoryGraphicsAllocation = neoDevice->getMemoryManager()->allocateGraphicsMemoryWithProperties(
{neoDevice->getRootDeviceIndex(), privateSurfaceSize, NEO::AllocationType::PRIVATE_SURFACE, neoDevice->getDeviceBitfield()});
UNRECOVERABLE_IF(privateMemoryGraphicsAllocation == nullptr);
return privateMemoryGraphicsAllocation;
}
void KernelImp::patchCrossthreadDataWithPrivateAllocation(NEO::GraphicsAllocation *privateAllocation) {
auto &kernelAttributes = kernelImmData->getDescriptor().kernelAttributes;
auto device = module->getDevice();
ArrayRef<uint8_t> crossThreadDataArrayRef = ArrayRef<uint8_t>(this->crossThreadData.get(), this->crossThreadDataSize);
ArrayRef<uint8_t> surfaceStateHeapArrayRef = ArrayRef<uint8_t>(this->surfaceStateHeapData.get(), this->surfaceStateHeapDataSize);
patchWithImplicitSurface(crossThreadDataArrayRef, surfaceStateHeapArrayRef,
static_cast<uintptr_t>(privateAllocation->getGpuAddressToPatch()),
*privateAllocation, kernelImmData->getDescriptor().payloadMappings.implicitArgs.privateMemoryAddress,
*device->getNEODevice(), kernelAttributes.flags.useGlobalAtomics, device->isImplicitScalingCapable());
}
void KernelImp::setInlineSamplers() {
auto device = module->getDevice();
const auto productFamily = device->getNEODevice()->getHardwareInfo().platform.eProductFamily;
for (auto &inlineSampler : getKernelDescriptor().inlineSamplers) {
ze_sampler_desc_t samplerDesc = {};
samplerDesc.addressMode = static_cast<ze_sampler_address_mode_t>(inlineSampler.addrMode);
samplerDesc.filterMode = static_cast<ze_sampler_filter_mode_t>(inlineSampler.filterMode);
samplerDesc.isNormalized = inlineSampler.isNormalized;
auto sampler = std::unique_ptr<L0::Sampler>(L0::Sampler::create(productFamily, device, &samplerDesc));
UNRECOVERABLE_IF(sampler.get() == nullptr);
sampler->copySamplerStateToDSH(dynamicStateHeapData.get(), dynamicStateHeapDataSize, inlineSampler.getSamplerBindfulOffset());
}
}
ze_result_t KernelImp::initialize(const ze_kernel_desc_t *desc) {
this->kernelImmData = module->getKernelImmutableData(desc->pKernelName);
if (this->kernelImmData == nullptr) {
return ZE_RESULT_ERROR_INVALID_KERNEL_NAME;
}
auto isaAllocation = this->kernelImmData->getIsaGraphicsAllocation();
auto neoDevice = module->getDevice()->getNEODevice();
auto &hwInfo = neoDevice->getHardwareInfo();
const auto &hwInfoConfig = *NEO::HwInfoConfig::get(hwInfo.platform.eProductFamily);
auto &kernelDescriptor = kernelImmData->getDescriptor();
UNRECOVERABLE_IF(!this->kernelImmData->getKernelInfo()->heapInfo.pKernelHeap);
if (isaAllocation->getAllocationType() == NEO::AllocationType::KERNEL_ISA_INTERNAL) {
NEO::MemoryTransferHelper::transferMemoryToAllocation(hwInfoConfig.isBlitCopyRequiredForLocalMemory(hwInfo, *isaAllocation),
*neoDevice,
isaAllocation,
0,
this->kernelImmData->getKernelInfo()->heapInfo.pKernelHeap,
static_cast<size_t>(this->kernelImmData->getKernelInfo()->heapInfo.KernelHeapSize));
}
for (const auto &argT : kernelDescriptor.payloadMappings.explicitArgs) {
switch (argT.type) {
default:
this->kernelArgHandlers.push_back(&KernelImp::setArgUnknown);
break;
case NEO::ArgDescriptor::ArgTPointer:
this->kernelArgHandlers.push_back(&KernelImp::setArgBuffer);
break;
case NEO::ArgDescriptor::ArgTImage:
this->kernelArgHandlers.push_back(&KernelImp::setArgImage);
break;
case NEO::ArgDescriptor::ArgTSampler:
this->kernelArgHandlers.push_back(&KernelImp::setArgSampler);
break;
case NEO::ArgDescriptor::ArgTValue:
this->kernelArgHandlers.push_back(&KernelImp::setArgImmediate);
break;
}
}
slmArgSizes.resize(this->kernelArgHandlers.size(), 0);
kernelArgInfos.resize(this->kernelArgHandlers.size(), {});
isArgUncached.resize(this->kernelArgHandlers.size(), 0);
if (kernelImmData->getSurfaceStateHeapSize() > 0) {
this->surfaceStateHeapData.reset(new uint8_t[kernelImmData->getSurfaceStateHeapSize()]);
memcpy_s(this->surfaceStateHeapData.get(),
kernelImmData->getSurfaceStateHeapSize(),
kernelImmData->getSurfaceStateHeapTemplate(),
kernelImmData->getSurfaceStateHeapSize());
this->surfaceStateHeapDataSize = kernelImmData->getSurfaceStateHeapSize();
}
if (kernelDescriptor.kernelAttributes.crossThreadDataSize != 0) {
this->crossThreadData.reset(new uint8_t[kernelDescriptor.kernelAttributes.crossThreadDataSize]);
memcpy_s(this->crossThreadData.get(),
kernelDescriptor.kernelAttributes.crossThreadDataSize,
kernelImmData->getCrossThreadDataTemplate(),
kernelDescriptor.kernelAttributes.crossThreadDataSize);
this->crossThreadDataSize = kernelDescriptor.kernelAttributes.crossThreadDataSize;
}
if (kernelImmData->getDynamicStateHeapDataSize() != 0) {
this->dynamicStateHeapData.reset(new uint8_t[kernelImmData->getDynamicStateHeapDataSize()]);
memcpy_s(this->dynamicStateHeapData.get(),
kernelImmData->getDynamicStateHeapDataSize(),
kernelImmData->getDynamicStateHeapTemplate(),
kernelImmData->getDynamicStateHeapDataSize());
this->dynamicStateHeapDataSize = kernelImmData->getDynamicStateHeapDataSize();
}
if (kernelDescriptor.kernelAttributes.requiredWorkgroupSize[0] > 0) {
auto *reqdSize = kernelDescriptor.kernelAttributes.requiredWorkgroupSize;
UNRECOVERABLE_IF(reqdSize[1] == 0);
UNRECOVERABLE_IF(reqdSize[2] == 0);
auto result = setGroupSize(reqdSize[0], reqdSize[1], reqdSize[2]);
if (result != ZE_RESULT_SUCCESS) {
return result;
}
} else {
auto result = setGroupSize(kernelDescriptor.kernelAttributes.simdSize, 1, 1);
if (result != ZE_RESULT_SUCCESS) {
return result;
}
}
residencyContainer.resize(this->kernelArgHandlers.size(), nullptr);
auto &kernelAttributes = kernelDescriptor.kernelAttributes;
if ((kernelAttributes.perHwThreadPrivateMemorySize != 0U) && (false == module->shouldAllocatePrivateMemoryPerDispatch())) {
this->privateMemoryGraphicsAllocation = allocatePrivateMemoryGraphicsAllocation();
this->patchCrossthreadDataWithPrivateAllocation(this->privateMemoryGraphicsAllocation);
this->residencyContainer.push_back(this->privateMemoryGraphicsAllocation);
}
if (kernelDescriptor.kernelAttributes.flags.requiresImplicitArgs) {
pImplicitArgs = std::make_unique<NEO::ImplicitArgs>();
*pImplicitArgs = {};
pImplicitArgs->structSize = sizeof(NEO::ImplicitArgs);
pImplicitArgs->structVersion = 0;
pImplicitArgs->simdWidth = kernelDescriptor.kernelAttributes.simdSize;
}
this->createPrintfBuffer();
this->setDebugSurface();
this->setInlineSamplers();
residencyContainer.insert(residencyContainer.end(), kernelImmData->getResidencyContainer().begin(),
kernelImmData->getResidencyContainer().end());
kernelHasIndirectAccess = kernelDescriptor.kernelAttributes.hasNonKernelArgLoad ||
kernelDescriptor.kernelAttributes.hasNonKernelArgStore ||
kernelDescriptor.kernelAttributes.hasNonKernelArgAtomic;
if (this->usesRayTracing()) {
uint32_t bvhLevels = NEO::RayTracingHelper::maxBvhLevels;
auto arg = this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.rtDispatchGlobals;
if (arg.pointerSize == 0) {
// kernel is allocating its own RTDispatchGlobals manually
neoDevice->initializeRayTracing(0);
} else {
neoDevice->initializeRayTracing(bvhLevels);
auto rtDispatchGlobalsInfo = neoDevice->getRTDispatchGlobals(bvhLevels);
if (rtDispatchGlobalsInfo == nullptr) {
return ZE_RESULT_ERROR_OUT_OF_HOST_MEMORY;
}
for (auto rtDispatchGlobals : rtDispatchGlobalsInfo->rtDispatchGlobals) {
this->residencyContainer.push_back(rtDispatchGlobals);
}
auto address = rtDispatchGlobalsInfo->rtDispatchGlobals[0]->getGpuAddressToPatch();
NEO::patchPointer(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize),
arg,
static_cast<uintptr_t>(address));
this->residencyContainer.push_back(neoDevice->getRTMemoryBackedBuffer());
}
}
return ZE_RESULT_SUCCESS;
}
void KernelImp::createPrintfBuffer() {
if (this->kernelImmData->getDescriptor().kernelAttributes.flags.usesPrintf || pImplicitArgs) {
this->printfBuffer = PrintfHandler::createPrintfBuffer(this->module->getDevice());
this->residencyContainer.push_back(printfBuffer);
if (this->kernelImmData->getDescriptor().kernelAttributes.flags.usesPrintf) {
NEO::patchPointer(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize),
this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.printfSurfaceAddress,
static_cast<uintptr_t>(this->printfBuffer->getGpuAddressToPatch()));
}
if (pImplicitArgs) {
pImplicitArgs->printfBufferPtr = printfBuffer->getGpuAddress();
}
}
}
void KernelImp::printPrintfOutput() {
PrintfHandler::printOutput(kernelImmData, this->printfBuffer, module->getDevice());
}
bool KernelImp::usesSyncBuffer() {
return this->kernelImmData->getDescriptor().kernelAttributes.flags.usesSyncBuffer;
}
void KernelImp::patchSyncBuffer(NEO::GraphicsAllocation *gfxAllocation, size_t bufferOffset) {
this->residencyContainer.push_back(gfxAllocation);
NEO::patchPointer(ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize),
this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.syncBufferAddress,
static_cast<uintptr_t>(ptrOffset(gfxAllocation->getGpuAddressToPatch(), bufferOffset)));
}
void KernelImp::setDebugSurface() {
auto device = module->getDevice();
if (module->isDebugEnabled() && device->getNEODevice()->getDebugger()) {
auto surfaceStateHeapRef = ArrayRef<uint8_t>(surfaceStateHeapData.get(), surfaceStateHeapDataSize);
patchWithImplicitSurface(ArrayRef<uint8_t>(), surfaceStateHeapRef,
0,
*device->getDebugSurface(), this->getImmutableData()->getDescriptor().payloadMappings.implicitArgs.systemThreadSurfaceAddress,
*device->getNEODevice(), getKernelDescriptor().kernelAttributes.flags.useGlobalAtomics, device->isImplicitScalingCapable());
}
}
void *KernelImp::patchBindlessSurfaceState(NEO::GraphicsAllocation *alloc, uint32_t bindless) {
auto &hwHelper = NEO::HwHelper::get(this->module->getDevice()->getHwInfo().platform.eRenderCoreFamily);
auto surfaceStateSize = hwHelper.getRenderSurfaceStateSize();
NEO::BindlessHeapsHelper *bindlessHeapsHelper = this->module->getDevice()->getNEODevice()->getBindlessHeapsHelper();
auto ssInHeap = bindlessHeapsHelper->allocateSSInHeap(surfaceStateSize, alloc, NEO::BindlessHeapsHelper::GLOBAL_SSH);
this->residencyContainer.push_back(ssInHeap.heapAllocation);
auto patchLocation = ptrOffset(getCrossThreadData(), bindless);
auto patchValue = hwHelper.getBindlessSurfaceExtendedMessageDescriptorValue(static_cast<uint32_t>(ssInHeap.surfaceStateOffset));
patchWithRequiredSize(const_cast<uint8_t *>(patchLocation), sizeof(patchValue), patchValue);
return ssInHeap.ssPtr;
}
void KernelImp::patchWorkgroupSizeInCrossThreadData(uint32_t x, uint32_t y, uint32_t z) {
const NEO::KernelDescriptor &desc = kernelImmData->getDescriptor();
auto dst = ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize);
uint32_t workgroupSize[3] = {x, y, z};
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.localWorkSize, workgroupSize);
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.localWorkSize2, workgroupSize);
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.enqueuedLocalWorkSize, workgroupSize);
if (pImplicitArgs) {
pImplicitArgs->localSizeX = x;
pImplicitArgs->localSizeY = y;
pImplicitArgs->localSizeZ = z;
}
}
ze_result_t KernelImp::setGlobalOffsetExp(uint32_t offsetX,
uint32_t offsetY,
uint32_t offsetZ) {
this->globalOffsets[0] = offsetX;
this->globalOffsets[1] = offsetY;
this->globalOffsets[2] = offsetZ;
return ZE_RESULT_SUCCESS;
}
void KernelImp::patchGlobalOffset() {
const NEO::KernelDescriptor &desc = kernelImmData->getDescriptor();
auto dst = ArrayRef<uint8_t>(crossThreadData.get(), crossThreadDataSize);
NEO::patchVecNonPointer(dst, desc.payloadMappings.dispatchTraits.globalWorkOffset, this->globalOffsets);
if (pImplicitArgs) {
pImplicitArgs->globalOffsetX = globalOffsets[0];
pImplicitArgs->globalOffsetY = globalOffsets[1];
pImplicitArgs->globalOffsetZ = globalOffsets[2];
}
}
Kernel *Kernel::create(uint32_t productFamily, Module *module,
const ze_kernel_desc_t *desc, ze_result_t *res) {
UNRECOVERABLE_IF(productFamily >= IGFX_MAX_PRODUCT);
KernelAllocatorFn allocator = kernelFactory[productFamily];
auto kernel = static_cast<KernelImp *>(allocator(module));
*res = kernel->initialize(desc);
if (*res) {
kernel->destroy();
return nullptr;
}
return kernel;
}
bool KernelImp::hasIndirectAllocationsAllowed() const {
return (unifiedMemoryControls.indirectDeviceAllocationsAllowed ||
unifiedMemoryControls.indirectHostAllocationsAllowed ||
unifiedMemoryControls.indirectSharedAllocationsAllowed);
}
uint32_t KernelImp::getSlmTotalSize() const {
return slmArgsTotalSize + getImmutableData()->getDescriptor().kernelAttributes.slmInlineSize;
}
ze_result_t KernelImp::setCacheConfig(ze_cache_config_flags_t flags) {
cacheConfigFlags = flags;
return ZE_RESULT_SUCCESS;
}
ze_result_t KernelImp::getProfileInfo(zet_profile_properties_t *pProfileProperties) {
pProfileProperties->flags = module->getProfileFlags();
pProfileProperties->numTokens = 0;
return ZE_RESULT_SUCCESS;
}
NEO::GraphicsAllocation *KernelImp::getIsaAllocation() const {
return getImmutableData()->getIsaGraphicsAllocation();
}
ze_result_t KernelImp::setSchedulingHintExp(ze_scheduling_hint_exp_desc_t *pHint) {
auto &threadArbitrationPolicy = const_cast<NEO::ThreadArbitrationPolicy &>(getKernelDescriptor().kernelAttributes.threadArbitrationPolicy);
if (pHint->flags == ZE_SCHEDULING_HINT_EXP_FLAG_OLDEST_FIRST) {
threadArbitrationPolicy = NEO::ThreadArbitrationPolicy::AgeBased;
} else if (pHint->flags == ZE_SCHEDULING_HINT_EXP_FLAG_ROUND_ROBIN) {
threadArbitrationPolicy = NEO::ThreadArbitrationPolicy::RoundRobin;
} else {
threadArbitrationPolicy = NEO::ThreadArbitrationPolicy::RoundRobinAfterDependency;
}
return ZE_RESULT_SUCCESS;
} // namespace L0
} // namespace L0
|