File: metric_ip_sampling_source.cpp

package info (click to toggle)
intel-compute-runtime 22.43.24595.41-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 57,740 kB
  • sloc: cpp: 631,142; lisp: 3,515; sh: 470; makefile: 76; python: 21
file content (428 lines) | stat: -rw-r--r-- 17,718 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*
 * Copyright (C) 2022 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/tools/source/metrics/metric_ip_sampling_source.h"

#include "level_zero/core/source/device/device_imp.h"
#include "level_zero/tools/source/metrics/metric.h"
#include "level_zero/tools/source/metrics/metric_ip_sampling_streamer.h"
#include "level_zero/tools/source/metrics/os_metric_ip_sampling.h"
#include <level_zero/zet_api.h>

#include <cstring>

namespace L0 {
constexpr uint32_t ipSamplinMetricCount = 10u;
constexpr uint32_t ipSamplinDomainId = 100u;

std::unique_ptr<IpSamplingMetricSourceImp> IpSamplingMetricSourceImp::create(const MetricDeviceContext &metricDeviceContext) {
    return std::unique_ptr<IpSamplingMetricSourceImp>(new (std::nothrow) IpSamplingMetricSourceImp(metricDeviceContext));
}

IpSamplingMetricSourceImp::IpSamplingMetricSourceImp(const MetricDeviceContext &metricDeviceContext) : metricDeviceContext(metricDeviceContext) {
    metricOsInterface = MetricIpSamplingOsInterface::create(metricDeviceContext.getDevice());
}

void IpSamplingMetricSourceImp::enable() {
    isEnabled = metricOsInterface->isDependencyAvailable();
}

bool IpSamplingMetricSourceImp::isAvailable() {
    return isEnabled;
}

void IpSamplingMetricSourceImp::cacheMetricGroup() {

    if (metricDeviceContext.isImplicitScalingCapable()) {
        const auto deviceImp = static_cast<DeviceImp *>(&metricDeviceContext.getDevice());
        std::vector<IpSamplingMetricGroupImp *> subDeviceMetricGroup = {};
        subDeviceMetricGroup.reserve(deviceImp->subDevices.size());

        // Prepare cached metric group for sub-devices
        for (auto &subDevice : deviceImp->subDevices) {
            IpSamplingMetricSourceImp &source = subDevice->getMetricDeviceContext().getMetricSource<IpSamplingMetricSourceImp>();
            // 1 metric group available for IP Sampling
            uint32_t count = 1;
            zet_metric_group_handle_t hMetricGroup = {};
            const auto result = source.metricGroupGet(&count, &hMetricGroup);
            // Getting MetricGroup from sub-device cannot fail, since RootDevice is successful
            UNRECOVERABLE_IF(result != ZE_RESULT_SUCCESS);
            subDeviceMetricGroup.push_back(static_cast<IpSamplingMetricGroupImp *>(MetricGroup::fromHandle(hMetricGroup)));
        }

        cachedMetricGroup = MultiDeviceIpSamplingMetricGroupImp::create(subDeviceMetricGroup);
        return;
    }

    std::vector<IpSamplingMetricImp> metrics = {};
    metrics.reserve(ipSamplinMetricCount);

    zet_metric_properties_t metricProperties = {};

    metricProperties.stype = ZET_STRUCTURE_TYPE_METRIC_PROPERTIES;
    metricProperties.pNext = nullptr;
    strcpy_s(metricProperties.component, ZET_MAX_METRIC_COMPONENT, "XVE");
    metricProperties.tierNumber = 4;
    metricProperties.resultType = ZET_VALUE_TYPE_UINT64;

    // Preparing properties for IP seperately because of unique values
    strcpy_s(metricProperties.name, ZET_MAX_METRIC_NAME, "IP");
    strcpy_s(metricProperties.description, ZET_MAX_METRIC_DESCRIPTION, "IP address");
    metricProperties.metricType = ZET_METRIC_TYPE_IP_EXP;
    strcpy_s(metricProperties.resultUnits, ZET_MAX_METRIC_RESULT_UNITS, "Address");
    metrics.push_back(IpSamplingMetricImp(metricProperties));

    std::vector<std::pair<const char *, const char *>> metricPropertiesList = {
        {"Active", "Active cycles"},
        {"ControlStall", "Stall on control"},
        {"PipeStall", "Stall on pipe"},
        {"SendStall", "Stall on send"},
        {"DistStall", "Stall on distance"},
        {"SbidStall", "Stall on scoreboard"},
        {"SyncStall", "Stall on sync"},
        {"InstrFetchStall", "Stall on instruction fetch"},
        {"OtherStall", "Stall on other condition"},
    };

    // Preparing properties for others because of common values
    metricProperties.metricType = ZET_METRIC_TYPE_EVENT;
    strcpy_s(metricProperties.resultUnits, ZET_MAX_METRIC_RESULT_UNITS, "Events");

    for (auto &property : metricPropertiesList) {
        strcpy_s(metricProperties.name, ZET_MAX_METRIC_NAME, property.first);
        strcpy_s(metricProperties.description, ZET_MAX_METRIC_DESCRIPTION, property.second);
        metrics.push_back(IpSamplingMetricImp(metricProperties));
    }

    cachedMetricGroup = IpSamplingMetricGroupImp::create(*this, metrics);
    DEBUG_BREAK_IF(cachedMetricGroup == nullptr);
}

ze_result_t IpSamplingMetricSourceImp::metricGroupGet(uint32_t *pCount, zet_metric_group_handle_t *phMetricGroups) {

    if (!isEnabled) {
        *pCount = 0;
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }

    if (*pCount == 0) {
        *pCount = 1;
        return ZE_RESULT_SUCCESS;
    }

    if (cachedMetricGroup == nullptr) {
        cacheMetricGroup();
    }

    DEBUG_BREAK_IF(phMetricGroups == nullptr);
    phMetricGroups[0] = cachedMetricGroup->toHandle();
    *pCount = 1;

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricSourceImp::appendMetricMemoryBarrier(CommandList &commandList) {
    return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}

void IpSamplingMetricSourceImp::setMetricOsInterface(std::unique_ptr<MetricIpSamplingOsInterface> &metricOsInterface) {
    this->metricOsInterface = std::move(metricOsInterface);
}

IpSamplingMetricGroupImp::IpSamplingMetricGroupImp(IpSamplingMetricSourceImp &metricSource,
                                                   std::vector<IpSamplingMetricImp> &metrics) : metricSource(metricSource) {
    this->metrics.reserve(metrics.size());
    for (const auto &metric : metrics) {
        this->metrics.push_back(std::make_unique<IpSamplingMetricImp>(metric));
    }

    properties.stype = ZET_STRUCTURE_TYPE_METRIC_GROUP_PROPERTIES;
    properties.pNext = nullptr;
    strcpy_s(properties.name, ZET_MAX_METRIC_GROUP_NAME, "EuStallSampling");
    strcpy_s(properties.description, ZET_MAX_METRIC_GROUP_DESCRIPTION, "EU stall sampling");
    properties.samplingType = ZET_METRIC_GROUP_SAMPLING_TYPE_FLAG_TIME_BASED;
    properties.domain = ipSamplinDomainId;
    properties.metricCount = ipSamplinMetricCount;
}

ze_result_t IpSamplingMetricGroupImp::getProperties(zet_metric_group_properties_t *pProperties) {
    *pProperties = properties;
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricGroupImp::metricGet(uint32_t *pCount, zet_metric_handle_t *phMetrics) {

    if (*pCount == 0) {
        *pCount = static_cast<uint32_t>(metrics.size());
        return ZE_RESULT_SUCCESS;
    }
    // User is expected to allocate space.
    DEBUG_BREAK_IF(phMetrics == nullptr);

    *pCount = std::min(*pCount, static_cast<uint32_t>(metrics.size()));

    for (uint32_t i = 0; i < *pCount; i++) {
        phMetrics[i] = metrics[i]->toHandle();
    }

    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricGroupImp::calculateMetricValues(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                            const uint8_t *pRawData, uint32_t *pMetricValueCount,
                                                            zet_typed_value_t *pMetricValues) {
    const bool calculateCountOnly = *pMetricValueCount == 0;
    if (calculateCountOnly) {
        return getCalculatedMetricCount(rawDataSize, *pMetricValueCount);
    } else {
        return getCalculatedMetricValues(type, rawDataSize, pRawData, *pMetricValueCount, pMetricValues);
    }
}

ze_result_t IpSamplingMetricGroupImp::calculateMetricValuesExp(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                               const uint8_t *pRawData, uint32_t *pSetCount,
                                                               uint32_t *pTotalMetricValueCount, uint32_t *pMetricCounts,
                                                               zet_typed_value_t *pMetricValues) {
    const bool calculationCountOnly = *pTotalMetricValueCount == 0;
    ze_result_t result = this->calculateMetricValues(type, rawDataSize, pRawData, pTotalMetricValueCount, pMetricValues);

    if ((result == ZE_RESULT_SUCCESS) || (result == ZE_RESULT_WARNING_DROPPED_DATA)) {
        *pSetCount = 1;
        if (!calculationCountOnly) {
            pMetricCounts[0] = *pTotalMetricValueCount;
        }
    } else {
        if (calculationCountOnly) {
            *pSetCount = 0;
            *pTotalMetricValueCount = 0;
        } else {
            pMetricCounts[0] = 0;
        }
    }
    return result;
}

ze_result_t IpSamplingMetricGroupImp::getCalculatedMetricCount(const size_t rawDataSize,
                                                               uint32_t &metricValueCount) {

    uint32_t rawReportSize = 64;

    if ((rawDataSize % rawReportSize) != 0) {
        return ZE_RESULT_ERROR_INVALID_SIZE;
    }

    const uint32_t rawReportCount = static_cast<uint32_t>(rawDataSize) / rawReportSize;
    metricValueCount = rawReportCount * properties.metricCount;
    return ZE_RESULT_SUCCESS;
}

ze_result_t IpSamplingMetricGroupImp::getCalculatedMetricValues(const zet_metric_group_calculation_type_t type, const size_t rawDataSize, const uint8_t *pRawData,
                                                                uint32_t &metricValueCount,
                                                                zet_typed_value_t *pCalculatedData) {
    bool dataOverflow = false;
    StallSumIpDataMap_t stallSumIpDataMap;

    // MAX_METRIC_VALUES is not supported yet.
    if (type != ZET_METRIC_GROUP_CALCULATION_TYPE_METRIC_VALUES) {
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }

    DEBUG_BREAK_IF(pCalculatedData == nullptr);

    uint32_t rawReportSize = 64;

    if ((rawDataSize % rawReportSize) != 0) {
        return ZE_RESULT_ERROR_INVALID_SIZE;
    }

    const uint32_t rawReportCount = static_cast<uint32_t>(rawDataSize) / rawReportSize;

    for (const uint8_t *pRawIpData = pRawData; pRawIpData < pRawData + (rawReportCount * rawReportSize); pRawIpData += rawReportSize) {
        dataOverflow |= stallIpDataMapUpdate(stallSumIpDataMap, pRawIpData);
    }

    metricValueCount = std::min<uint32_t>(metricValueCount, static_cast<uint32_t>(stallSumIpDataMap.size()) * properties.metricCount);
    std::vector<zet_typed_value_t> ipDataValues;
    uint32_t i = 0;
    for (auto it = stallSumIpDataMap.begin(); it != stallSumIpDataMap.end(); ++it) {
        stallSumIpDataToTypedValues(it->first, it->second, ipDataValues);
        for (auto jt = ipDataValues.begin(); (jt != ipDataValues.end()) && (i < metricValueCount); jt++, i++) {
            *(pCalculatedData + i) = *jt;
        }
        ipDataValues.clear();
    }

    return dataOverflow ? ZE_RESULT_WARNING_DROPPED_DATA : ZE_RESULT_SUCCESS;
}

/*
 * stall sample data item format:
 *
 * Bits		Field
 * 0  to 28	IP (addr)
 * 29 to 36	active count
 * 37 to 44	other count
 * 45 to 52	control count
 * 53 to 60	pipestall count
 * 61 to 68	send count
 * 69 to 76	dist_acc count
 * 77 to 84	sbid count
 * 85 to 92	sync count
 * 93 to 100	inst_fetch count
 *
 * bytes 49 and 50, subSlice
 * bytes 51 and 52, flags
 *
 * total size 64 bytes
 */
bool IpSamplingMetricGroupImp::stallIpDataMapUpdate(StallSumIpDataMap_t &stallSumIpDataMap, const uint8_t *pRawIpData) {

    const uint8_t *tempAddr = pRawIpData;
    uint64_t ip = 0ULL;
    memcpy_s(reinterpret_cast<uint8_t *>(&ip), sizeof(ip), tempAddr, sizeof(ip));
    ip &= 0x1fffffff;
    StallSumIpData_t &stallSumData = stallSumIpDataMap[ip];
    tempAddr += 3;

    auto getCount = [&tempAddr]() {
        uint16_t tempCount = 0;
        memcpy_s(reinterpret_cast<uint8_t *>(&tempCount), sizeof(tempCount), tempAddr, sizeof(tempCount));
        tempCount = (tempCount >> 5) & 0xff;
        tempAddr += 1;
        return static_cast<uint8_t>(tempCount);
    };

    stallSumData.activeCount += getCount();
    stallSumData.otherCount += getCount();
    stallSumData.controlCount += getCount();
    stallSumData.pipeStallCount += getCount();
    stallSumData.sendCount += getCount();
    stallSumData.distAccCount += getCount();
    stallSumData.sbidCount += getCount();
    stallSumData.syncCount += getCount();
    stallSumData.instFetchCount += getCount();

    struct stallCntrInfo {
        uint16_t subslice;
        uint16_t flags;
    } stallCntrInfo = {};

    tempAddr = pRawIpData + 48;
    memcpy_s(reinterpret_cast<uint8_t *>(&stallCntrInfo), sizeof(stallCntrInfo), tempAddr, sizeof(stallCntrInfo));

    constexpr int overflowDropFlag = (1 << 8);
    return stallCntrInfo.flags & overflowDropFlag;
}

// The order of push_back calls must match the order of metricPropertiesList.
void IpSamplingMetricGroupImp::stallSumIpDataToTypedValues(uint64_t ip,
                                                           StallSumIpData_t &sumIpData,
                                                           std::vector<zet_typed_value_t> &ipDataValues) {
    zet_typed_value_t tmpValueData;
    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = ip;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.activeCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.controlCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.pipeStallCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.sendCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.distAccCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.sbidCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.syncCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.instFetchCount;
    ipDataValues.push_back(tmpValueData);

    tmpValueData.type = ZET_VALUE_TYPE_UINT64;
    tmpValueData.value.ui64 = sumIpData.otherCount;
    ipDataValues.push_back(tmpValueData);
}

zet_metric_group_handle_t IpSamplingMetricGroupImp::getMetricGroupForSubDevice(const uint32_t subDeviceIndex) {
    return toHandle();
}

std::unique_ptr<IpSamplingMetricGroupImp> IpSamplingMetricGroupImp::create(IpSamplingMetricSourceImp &metricSource,
                                                                           std::vector<IpSamplingMetricImp> &ipSamplingMetrics) {
    return std::unique_ptr<IpSamplingMetricGroupImp>(new (std::nothrow) IpSamplingMetricGroupImp(metricSource, ipSamplingMetrics));
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::getProperties(zet_metric_group_properties_t *pProperties) {
    return subDeviceMetricGroup[0]->getProperties(pProperties);
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::metricGet(uint32_t *pCount, zet_metric_handle_t *phMetrics) {
    return subDeviceMetricGroup[0]->metricGet(pCount, phMetrics);
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::calculateMetricValues(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                                       const uint8_t *pRawData, uint32_t *pMetricValueCount,
                                                                       zet_typed_value_t *pMetricValues) {
    return subDeviceMetricGroup[0]->calculateMetricValues(type, rawDataSize, pRawData, pMetricValueCount, pMetricValues);
}

ze_result_t MultiDeviceIpSamplingMetricGroupImp::calculateMetricValuesExp(const zet_metric_group_calculation_type_t type, size_t rawDataSize,
                                                                          const uint8_t *pRawData, uint32_t *pSetCount,
                                                                          uint32_t *pTotalMetricValueCount, uint32_t *pMetricCounts,
                                                                          zet_typed_value_t *pMetricValues) {

    return subDeviceMetricGroup[0]->calculateMetricValuesExp(type, rawDataSize, pRawData, pSetCount, pTotalMetricValueCount,
                                                             pMetricCounts, pMetricValues);
}

zet_metric_group_handle_t MultiDeviceIpSamplingMetricGroupImp::getMetricGroupForSubDevice(const uint32_t subDeviceIndex) {
    return subDeviceMetricGroup[subDeviceIndex]->toHandle();
}

void MultiDeviceIpSamplingMetricGroupImp::closeSubDeviceStreamers(std::vector<IpSamplingMetricStreamerImp *> &subDeviceStreamers) {
    for (auto streamer : subDeviceStreamers) {
        streamer->close();
    }
}

std::unique_ptr<MultiDeviceIpSamplingMetricGroupImp> MultiDeviceIpSamplingMetricGroupImp::create(
    std::vector<IpSamplingMetricGroupImp *> &subDeviceMetricGroup) {
    UNRECOVERABLE_IF(subDeviceMetricGroup.size() == 0);
    return std::unique_ptr<MultiDeviceIpSamplingMetricGroupImp>(new (std::nothrow) MultiDeviceIpSamplingMetricGroupImp(subDeviceMetricGroup));
}

IpSamplingMetricImp::IpSamplingMetricImp(zet_metric_properties_t &properties) : properties(properties) {
}

ze_result_t IpSamplingMetricImp::getProperties(zet_metric_properties_t *pProperties) {
    *pProperties = properties;
    return ZE_RESULT_SUCCESS;
}

template <>
IpSamplingMetricSourceImp &MetricDeviceContext::getMetricSource<IpSamplingMetricSourceImp>() const {
    return static_cast<IpSamplingMetricSourceImp &>(*metricSources.at(MetricSource::SourceType::IpSampling));
}

} // namespace L0