1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "pci_imp.h"
#include "shared/source/helpers/basic_math.h"
#include "shared/source/helpers/debug_helpers.h"
#include "shared/source/helpers/string.h"
#include "shared/source/utilities/directory.h"
#include <cstring>
namespace L0 {
//
// While computing the PCIe bandwidth, also consider that due to 8b/10b encoding
// in PCIe gen1 and gen2 real bandwidth will be reduced by 20%,
// And in case of gen3 and above due to 128b/130b encoding real bandwidth is
// reduced by approx 1.54% as compared to theoretical bandwidth.
// In below method, get real PCIe speed in pcieSpeedWithEnc in Mega bits per second
// pcieSpeedWithEnc = maxLinkSpeedInGt * (Gigabit to Megabit) * Encoding =
// maxLinkSpeedInGt * 1000 * Encoding
//
int64_t convertPcieSpeedFromGTsToBs(double maxLinkSpeedInGt) {
double pcieSpeedWithEnc;
if ((maxLinkSpeedInGt == PciLinkSpeeds::Pci32_0GigatransfersPerSecond) || (maxLinkSpeedInGt == PciLinkSpeeds::Pci16_0GigatransfersPerSecond) || (maxLinkSpeedInGt == PciLinkSpeeds::Pci8_0GigatransfersPerSecond)) {
pcieSpeedWithEnc = maxLinkSpeedInGt * 1000 * 128 / 130;
} else if ((maxLinkSpeedInGt == PciLinkSpeeds::Pci5_0GigatransfersPerSecond) || (maxLinkSpeedInGt == PciLinkSpeeds::Pci2_5GigatransfersPerSecond)) {
pcieSpeedWithEnc = maxLinkSpeedInGt * 1000 * 8 / 10;
} else {
pcieSpeedWithEnc = 0;
}
//
// PCIE speed we got above is in Mega bits per second
// Convert that speed in bytes/second.
// Now, because 1Mb/s = (1000*1000)/8 bytes/second = 125000 bytes/second
//
pcieSpeedWithEnc = pcieSpeedWithEnc * 125000;
return static_cast<int64_t>(pcieSpeedWithEnc);
}
double convertPciGenToLinkSpeed(uint32_t gen) {
switch (gen) {
case PciGenerations::PciGen1: {
return PciLinkSpeeds::Pci2_5GigatransfersPerSecond;
} break;
case PciGenerations::PciGen2: {
return PciLinkSpeeds::Pci5_0GigatransfersPerSecond;
} break;
case PciGenerations::PciGen3: {
return PciLinkSpeeds::Pci8_0GigatransfersPerSecond;
} break;
case PciGenerations::PciGen4: {
return PciLinkSpeeds::Pci16_0GigatransfersPerSecond;
} break;
case PciGenerations::PciGen5: {
return PciLinkSpeeds::Pci32_0GigatransfersPerSecond;
} break;
default: {
return 0.0;
} break;
}
}
int32_t convertLinkSpeedToPciGen(double speed) {
if (speed == PciLinkSpeeds::Pci2_5GigatransfersPerSecond) {
return PciGenerations::PciGen1;
} else if (speed == PciLinkSpeeds::Pci5_0GigatransfersPerSecond) {
return PciGenerations::PciGen2;
} else if (speed == PciLinkSpeeds::Pci8_0GigatransfersPerSecond) {
return PciGenerations::PciGen3;
} else if (speed == PciLinkSpeeds::Pci16_0GigatransfersPerSecond) {
return PciGenerations::PciGen4;
} else if (speed == PciLinkSpeeds::Pci32_0GigatransfersPerSecond) {
return PciGenerations::PciGen5;
} else {
return -1;
}
}
ze_result_t PciImp::pciStaticProperties(zes_pci_properties_t *pProperties) {
initPci();
*pProperties = pciProperties;
return ZE_RESULT_SUCCESS;
}
ze_result_t PciImp::pciGetInitializedBars(uint32_t *pCount, zes_pci_bar_properties_t *pProperties) {
initPci();
uint32_t pciBarPropertiesSize = static_cast<uint32_t>(pciBarProperties.size());
uint32_t numToCopy = std::min(*pCount, pciBarPropertiesSize);
if (0 == *pCount || *pCount > pciBarPropertiesSize) {
*pCount = pciBarPropertiesSize;
}
if (nullptr != pProperties) {
for (uint32_t i = 0; i < numToCopy; i++) {
pProperties[i].base = pciBarProperties[i]->base;
pProperties[i].index = pciBarProperties[i]->index;
pProperties[i].size = pciBarProperties[i]->size;
pProperties[i].type = pciBarProperties[i]->type;
if (pProperties[i].pNext != nullptr) {
zes_pci_bar_properties_1_2_t *pBarPropsExt = static_cast<zes_pci_bar_properties_1_2_t *>(pProperties[i].pNext);
if (pBarPropsExt->stype == zes_structure_type_t::ZES_STRUCTURE_TYPE_PCI_BAR_PROPERTIES_1_2) {
// base, index, size and type are the same as the non 1.2 struct.
pBarPropsExt->base = pciBarProperties[i]->base;
pBarPropsExt->index = pciBarProperties[i]->index;
pBarPropsExt->size = pciBarProperties[i]->size;
pBarPropsExt->type = pciBarProperties[i]->type;
pBarPropsExt->resizableBarSupported = static_cast<ze_bool_t>(resizableBarSupported);
pBarPropsExt->resizableBarEnabled = static_cast<ze_bool_t>(pOsPci->resizableBarEnabled(pBarPropsExt->index));
}
}
}
}
return ZE_RESULT_SUCCESS;
}
ze_result_t PciImp::pciGetState(zes_pci_state_t *pState) {
initPci();
return pOsPci->getState(pState);
}
void PciImp::pciGetStaticFields() {
pOsPci->getProperties(&pciProperties);
resizableBarSupported = pOsPci->resizableBarSupported();
std::string bdf;
pOsPci->getPciBdf(pciProperties);
int32_t maxLinkWidth = -1;
int64_t maxBandWidth = -1;
double maxLinkSpeed = 0;
pOsPci->getMaxLinkCaps(maxLinkSpeed, maxLinkWidth);
maxBandWidth = maxLinkWidth * convertPcieSpeedFromGTsToBs(maxLinkSpeed);
if (maxBandWidth == 0) {
pciProperties.maxSpeed.maxBandwidth = -1;
} else {
pciProperties.maxSpeed.maxBandwidth = maxBandWidth;
}
pciProperties.maxSpeed.width = maxLinkWidth;
pciProperties.maxSpeed.gen = convertLinkSpeedToPciGen(maxLinkSpeed);
pOsPci->initializeBarProperties(pciBarProperties);
}
void PciImp::initPci() {
std::call_once(initPciOnce, [this]() {
this->init();
});
}
void PciImp::init() {
if (pOsPci == nullptr) {
pOsPci = OsPci::create(pOsSysman);
}
UNRECOVERABLE_IF(nullptr == pOsPci);
pciGetStaticFields();
}
PciImp::~PciImp() {
for (zes_pci_bar_properties_t *pProperties : pciBarProperties) {
delete pProperties;
pProperties = nullptr;
}
if (nullptr != pOsPci) {
delete pOsPci;
pOsPci = nullptr;
}
}
} // namespace L0
|