1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/power/linux/os_power_imp.h"
#include "level_zero/tools/source/sysman/linux/pmt/pmt.h"
#include "level_zero/tools/source/sysman/sysman_const.h"
#include "sysman/linux/os_sysman_imp.h"
namespace L0 {
const std::string LinuxPowerImp::hwmonDir("device/hwmon");
const std::string LinuxPowerImp::i915("i915");
const std::string LinuxPowerImp::sustainedPowerLimitEnabled("power1_max_enable");
const std::string LinuxPowerImp::sustainedPowerLimit("power1_max");
const std::string LinuxPowerImp::sustainedPowerLimitInterval("power1_max_interval");
const std::string LinuxPowerImp::burstPowerLimitEnabled("power1_cap_enable");
const std::string LinuxPowerImp::burstPowerLimit("power1_cap");
const std::string LinuxPowerImp::energyCounterNode("energy1_input");
const std::string LinuxPowerImp::defaultPowerLimit("power_default_limit");
const std::string LinuxPowerImp::minPowerLimit("power_min_limit");
const std::string LinuxPowerImp::maxPowerLimit("power_max_limit");
void powerGetTimestamp(uint64_t ×tamp) {
std::chrono::time_point<std::chrono::steady_clock> ts = std::chrono::steady_clock::now();
timestamp = std::chrono::duration_cast<std::chrono::microseconds>(ts.time_since_epoch()).count();
}
ze_result_t LinuxPowerImp::getProperties(zes_power_properties_t *pProperties) {
pProperties->onSubdevice = isSubdevice;
pProperties->subdeviceId = subdeviceId;
pProperties->canControl = canControl;
pProperties->isEnergyThresholdSupported = false;
pProperties->defaultLimit = -1;
pProperties->minLimit = -1;
pProperties->maxLimit = -1;
uint32_t val = 0;
auto result = pSysfsAccess->read(i915HwmonDir + "/" + defaultPowerLimit, val);
if (ZE_RESULT_SUCCESS == result) {
pProperties->defaultLimit = static_cast<int32_t>(val / milliFactor); // need to convert from microwatt to milliwatt
}
result = pSysfsAccess->read(i915HwmonDir + "/" + minPowerLimit, val);
if (ZE_RESULT_SUCCESS == result && val != 0) {
pProperties->minLimit = static_cast<int32_t>(val / milliFactor); // need to convert from microwatt to milliwatt
}
result = pSysfsAccess->read(i915HwmonDir + "/" + maxPowerLimit, val);
if (ZE_RESULT_SUCCESS == result && val != std::numeric_limits<uint32_t>::max()) {
pProperties->maxLimit = static_cast<int32_t>(val / milliFactor); // need to convert from microwatt to milliwatt
}
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxPowerImp::getPropertiesExt(zes_power_ext_properties_t *pExtPoperties) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxPowerImp::getPmtEnergyCounter(zes_power_energy_counter_t *pEnergy) {
const std::string key("PACKAGE_ENERGY");
uint64_t energy = 0;
constexpr uint64_t fixedPointToJoule = 1048576;
ze_result_t result = pPmt->readValue(key, energy);
// PMT will return energy counter in Q20 format(fixed point representation) where first 20 bits(from LSB) represent decimal part and remaining integral part which is converted into joule by division with 1048576(2^20) and then converted into microjoules
pEnergy->energy = (energy / fixedPointToJoule) * convertJouleToMicroJoule;
return result;
}
ze_result_t LinuxPowerImp::getEnergyCounter(zes_power_energy_counter_t *pEnergy) {
powerGetTimestamp(pEnergy->timestamp);
ze_result_t result = pSysfsAccess->read(i915HwmonDir + "/" + energyCounterNode, pEnergy->energy);
if (result != ZE_RESULT_SUCCESS) {
if (pPmt != nullptr) {
return getPmtEnergyCounter(pEnergy);
}
}
if (result != ZE_RESULT_SUCCESS) {
return getErrorCode(result);
}
return result;
}
ze_result_t LinuxPowerImp::getLimits(zes_power_sustained_limit_t *pSustained, zes_power_burst_limit_t *pBurst, zes_power_peak_limit_t *pPeak) {
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
uint64_t val = 0;
if (pSustained != nullptr) {
result = pSysfsAccess->read(i915HwmonDir + "/" + sustainedPowerLimitEnabled, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
pSustained->enabled = static_cast<ze_bool_t>(val);
if (pSustained->enabled) {
val = 0;
result = pSysfsAccess->read(i915HwmonDir + "/" + sustainedPowerLimit, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
val /= milliFactor; // Convert microWatts to milliwatts
pSustained->power = static_cast<int32_t>(val);
val = 0;
result = pSysfsAccess->read(i915HwmonDir + "/" + sustainedPowerLimitInterval, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
pSustained->interval = static_cast<int32_t>(val);
}
}
if (pBurst != nullptr) {
result = pSysfsAccess->read(i915HwmonDir + "/" + burstPowerLimitEnabled, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
pBurst->enabled = static_cast<ze_bool_t>(val);
if (pBurst->enabled) {
result = pSysfsAccess->read(i915HwmonDir + "/" + burstPowerLimit, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
val /= milliFactor; // Convert microWatts to milliwatts
pBurst->power = static_cast<int32_t>(val);
}
}
if (pPeak != nullptr) {
pPeak->powerAC = -1;
pPeak->powerDC = -1;
result = ZE_RESULT_SUCCESS;
}
return result;
}
ze_result_t LinuxPowerImp::setLimits(const zes_power_sustained_limit_t *pSustained, const zes_power_burst_limit_t *pBurst, const zes_power_peak_limit_t *pPeak) {
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
int32_t val = 0;
if (pSustained != nullptr) {
uint64_t isSustainedPowerLimitEnabled = 0;
result = pSysfsAccess->read(i915HwmonDir + "/" + sustainedPowerLimitEnabled, isSustainedPowerLimitEnabled);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
if (isSustainedPowerLimitEnabled != static_cast<uint64_t>(pSustained->enabled)) {
result = pSysfsAccess->write(i915HwmonDir + "/" + sustainedPowerLimitEnabled, static_cast<int>(pSustained->enabled));
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
isSustainedPowerLimitEnabled = static_cast<uint64_t>(pSustained->enabled);
}
if (isSustainedPowerLimitEnabled) {
val = static_cast<uint32_t>(pSustained->power) * milliFactor; // Convert milliWatts to microwatts
result = pSysfsAccess->write(i915HwmonDir + "/" + sustainedPowerLimit, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
result = pSysfsAccess->write(i915HwmonDir + "/" + sustainedPowerLimitInterval, pSustained->interval);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
}
result = ZE_RESULT_SUCCESS;
}
if (pBurst != nullptr) {
result = pSysfsAccess->write(i915HwmonDir + "/" + burstPowerLimitEnabled, static_cast<int>(pBurst->enabled));
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
if (pBurst->enabled) {
val = static_cast<uint32_t>(pBurst->power) * milliFactor; // Convert milliWatts to microwatts
result = pSysfsAccess->write(i915HwmonDir + "/" + burstPowerLimit, val);
if (ZE_RESULT_SUCCESS != result) {
return getErrorCode(result);
}
}
}
return result;
}
ze_result_t LinuxPowerImp::getEnergyThreshold(zes_energy_threshold_t *pThreshold) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxPowerImp::setEnergyThreshold(double threshold) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxPowerImp::getLimitsExt(uint32_t *pCount, zes_power_limit_ext_desc_t *pSustained) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
ze_result_t LinuxPowerImp::setLimitsExt(uint32_t *pCount, zes_power_limit_ext_desc_t *pSustained) {
return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
bool LinuxPowerImp::isHwmonDir(std::string name) {
if (isSubdevice == false && (name == i915)) {
return true;
}
return false;
}
bool LinuxPowerImp::isPowerModuleSupported() {
std::vector<std::string> listOfAllHwmonDirs = {};
bool hwmonDirExists = false;
if (ZE_RESULT_SUCCESS != pSysfsAccess->scanDirEntries(hwmonDir, listOfAllHwmonDirs)) {
hwmonDirExists = false;
}
for (const auto &tempHwmonDirEntry : listOfAllHwmonDirs) {
const std::string i915NameFile = hwmonDir + "/" + tempHwmonDirEntry + "/" + "name";
std::string name;
if (ZE_RESULT_SUCCESS != pSysfsAccess->read(i915NameFile, name)) {
continue;
}
if (isHwmonDir(name)) {
i915HwmonDir = hwmonDir + "/" + tempHwmonDirEntry;
hwmonDirExists = true;
canControl = true;
}
}
if (hwmonDirExists == false) {
return (pPmt != nullptr);
}
return true;
}
LinuxPowerImp::LinuxPowerImp(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) : isSubdevice(onSubdevice), subdeviceId(subdeviceId) {
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pPmt = pLinuxSysmanImp->getPlatformMonitoringTechAccess(subdeviceId);
pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
}
OsPower *OsPower::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId) {
LinuxPowerImp *pLinuxPowerImp = new LinuxPowerImp(pOsSysman, onSubdevice, subdeviceId);
return static_cast<OsPower *>(pLinuxPowerImp);
}
} // namespace L0
|