1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
/*
* Copyright (C) 2020-2022 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#include "level_zero/tools/source/sysman/scheduler/linux/os_scheduler_imp.h"
#include "sysman/linux/os_sysman_imp.h"
namespace L0 {
const std::string LinuxSchedulerImp::preemptTimeoutMilliSecs("preempt_timeout_ms");
const std::string LinuxSchedulerImp::defaultPreemptTimeouttMilliSecs(".defaults/preempt_timeout_ms");
const std::string LinuxSchedulerImp::timesliceDurationMilliSecs("timeslice_duration_ms");
const std::string LinuxSchedulerImp::defaultTimesliceDurationMilliSecs(".defaults/timeslice_duration_ms");
const std::string LinuxSchedulerImp::heartbeatIntervalMilliSecs("heartbeat_interval_ms");
const std::string LinuxSchedulerImp::defaultHeartbeatIntervalMilliSecs(".defaults/heartbeat_interval_ms");
const std::string LinuxSchedulerImp::enableEuDebug("");
const std::string LinuxSchedulerImp::engineDir("engine");
ze_result_t LinuxSchedulerImp::getProperties(zes_sched_properties_t &schedProperties) {
schedProperties.onSubdevice = onSubdevice;
schedProperties.subdeviceId = subdeviceId;
schedProperties.canControl = canControlScheduler();
schedProperties.engines = this->engineType;
schedProperties.supportedModes = (1 << ZES_SCHED_MODE_TIMEOUT) | (1 << ZES_SCHED_MODE_TIMESLICE) | (1 << ZES_SCHED_MODE_EXCLUSIVE);
return ZE_RESULT_SUCCESS;
}
ze_result_t LinuxSchedulerImp::getPreemptTimeout(uint64_t &timeout, ze_bool_t getDefault) {
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
uint32_t i = 0;
std::vector<uint64_t> timeoutVec = {};
timeoutVec.resize(listOfEngines.size());
for (const auto &engineName : listOfEngines) {
if (getDefault) {
result = pSysfsAccess->read(engineDir + "/" + engineName + "/" + defaultPreemptTimeouttMilliSecs, timeout);
} else {
result = pSysfsAccess->read(engineDir + "/" + engineName + "/" + preemptTimeoutMilliSecs, timeout);
}
if (result == ZE_RESULT_SUCCESS) {
timeout = timeout * milliSecsToMicroSecs;
timeoutVec[i] = timeout;
i++;
} else {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
}
// check if all engines of the same type have the same scheduling param values
if (std::adjacent_find(timeoutVec.begin(), timeoutVec.end(), std::not_equal_to<>()) == timeoutVec.end()) {
timeout = timeoutVec[0];
return result;
} else {
return ZE_RESULT_ERROR_UNKNOWN;
}
}
ze_result_t LinuxSchedulerImp::getTimesliceDuration(uint64_t ×lice, ze_bool_t getDefault) {
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
uint32_t i = 0;
std::vector<uint64_t> timesliceVec = {};
timesliceVec.resize(listOfEngines.size());
for (const auto &engineName : listOfEngines) {
if (getDefault) {
result = pSysfsAccess->read(engineDir + "/" + engineName + "/" + defaultTimesliceDurationMilliSecs, timeslice);
} else {
result = pSysfsAccess->read(engineDir + "/" + engineName + "/" + timesliceDurationMilliSecs, timeslice);
}
if (result == ZE_RESULT_SUCCESS) {
timeslice = timeslice * milliSecsToMicroSecs;
timesliceVec[i] = timeslice;
i++;
} else {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
}
// check if all engines of the same type have the same scheduling param values
if (std::adjacent_find(timesliceVec.begin(), timesliceVec.end(), std::not_equal_to<>()) == timesliceVec.end()) {
timeslice = timesliceVec[0];
return result;
} else {
return ZE_RESULT_ERROR_UNKNOWN;
}
}
ze_result_t LinuxSchedulerImp::getHeartbeatInterval(uint64_t &heartbeat, ze_bool_t getDefault) {
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
uint32_t i = 0;
std::vector<uint64_t> heartbeatVec = {};
heartbeatVec.resize(listOfEngines.size());
for (const auto &engineName : listOfEngines) {
if (getDefault) {
result = pSysfsAccess->read(engineDir + "/" + engineName + "/" + defaultHeartbeatIntervalMilliSecs, heartbeat);
} else {
result = pSysfsAccess->read(engineDir + "/" + engineName + "/" + heartbeatIntervalMilliSecs, heartbeat);
}
if (result == ZE_RESULT_SUCCESS) {
heartbeat = heartbeat * milliSecsToMicroSecs;
heartbeatVec[i] = heartbeat;
i++;
} else {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
}
// check if all engines of the same type have the same scheduling param values
if (std::adjacent_find(heartbeatVec.begin(), heartbeatVec.end(), std::not_equal_to<>()) == heartbeatVec.end()) {
heartbeat = heartbeatVec[0];
return result;
} else {
return ZE_RESULT_ERROR_UNKNOWN;
}
}
ze_result_t LinuxSchedulerImp::setPreemptTimeout(uint64_t timeout) {
timeout = timeout / milliSecsToMicroSecs;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
for (const auto &engineName : listOfEngines) {
result = pSysfsAccess->write(engineDir + "/" + engineName + "/" + preemptTimeoutMilliSecs, timeout);
if (result != ZE_RESULT_SUCCESS) {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
}
return result;
}
ze_result_t LinuxSchedulerImp::setTimesliceDuration(uint64_t timeslice) {
timeslice = timeslice / milliSecsToMicroSecs;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
for (const auto &engineName : listOfEngines) {
result = pSysfsAccess->write(engineDir + "/" + engineName + "/" + timesliceDurationMilliSecs, timeslice);
if (result != ZE_RESULT_SUCCESS) {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
}
return result;
}
ze_result_t LinuxSchedulerImp::setHeartbeatInterval(uint64_t heartbeat) {
heartbeat = heartbeat / milliSecsToMicroSecs;
ze_result_t result = ZE_RESULT_ERROR_UNKNOWN;
for (const auto &engineName : listOfEngines) {
result = pSysfsAccess->write(engineDir + "/" + engineName + "/" + heartbeatIntervalMilliSecs, heartbeat);
if (result != ZE_RESULT_SUCCESS) {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
}
return result;
}
ze_bool_t LinuxSchedulerImp::canControlScheduler() {
return 1;
}
ze_result_t LinuxSchedulerImp::setComputeUnitDebugMode(ze_bool_t *pNeedReload) {
*pNeedReload = false;
return pSysfsAccess->write(enableEuDebug, 1);
}
static const std::multimap<zes_engine_type_flag_t, std::string> level0EngineTypeToSysfsEngineMap = {
{ZES_ENGINE_TYPE_FLAG_RENDER, "rcs"},
{ZES_ENGINE_TYPE_FLAG_DMA, "bcs"},
{ZES_ENGINE_TYPE_FLAG_MEDIA, "vcs"},
{ZES_ENGINE_TYPE_FLAG_OTHER, "vecs"}};
static ze_result_t getNumEngineTypeAndInstancesForDevice(std::map<zes_engine_type_flag_t, std::vector<std::string>> &mapOfEngines, SysfsAccess *pSysfsAccess) {
std::vector<std::string> localListOfAllEngines = {};
auto result = pSysfsAccess->scanDirEntries(LinuxSchedulerImp::engineDir, localListOfAllEngines);
if (ZE_RESULT_SUCCESS != result) {
if (result == ZE_RESULT_ERROR_NOT_AVAILABLE) {
result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
}
return result;
}
for_each(localListOfAllEngines.begin(), localListOfAllEngines.end(),
[&](std::string &mappedEngine) {
for (auto itr = level0EngineTypeToSysfsEngineMap.begin(); itr != level0EngineTypeToSysfsEngineMap.end(); itr++) {
char digits[] = "0123456789";
auto mappedEngineName = mappedEngine.substr(0, mappedEngine.find_first_of(digits, 0));
if (0 == mappedEngineName.compare(itr->second.c_str())) {
auto ret = mapOfEngines.find(itr->first);
if (ret != mapOfEngines.end()) {
ret->second.push_back(mappedEngine);
} else {
std::vector<std::string> engineVec = {};
engineVec.push_back(mappedEngine);
mapOfEngines.emplace(itr->first, engineVec);
}
}
}
});
return result;
}
ze_result_t OsScheduler::getNumEngineTypeAndInstances(
std::map<zes_engine_type_flag_t, std::vector<std::string>> &mapOfEngines, OsSysman *pOsSysman, ze_device_handle_t subdeviceHandle) {
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
auto pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
return getNumEngineTypeAndInstancesForDevice(mapOfEngines, pSysfsAccess);
}
LinuxSchedulerImp::LinuxSchedulerImp(
OsSysman *pOsSysman, zes_engine_type_flag_t type, std::vector<std::string> &listOfEngines, ze_bool_t isSubdevice,
uint32_t subdeviceId) : engineType(type), onSubdevice(isSubdevice), subdeviceId(subdeviceId) {
LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
pSysfsAccess = &pLinuxSysmanImp->getSysfsAccess();
this->listOfEngines = listOfEngines;
}
OsScheduler *OsScheduler::create(
OsSysman *pOsSysman, zes_engine_type_flag_t type, std::vector<std::string> &listOfEngines, ze_bool_t isSubdevice, uint32_t subdeviceId) {
LinuxSchedulerImp *pLinuxSchedulerImp = new LinuxSchedulerImp(pOsSysman, type, listOfEngines, isSubdevice, subdeviceId);
return static_cast<OsScheduler *>(pLinuxSchedulerImp);
}
} // namespace L0
|