File: os_temperature_imp.cpp

package info (click to toggle)
intel-compute-runtime 22.43.24595.41-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 57,740 kB
  • sloc: cpp: 631,142; lisp: 3,515; sh: 470; makefile: 76; python: 21
file content (235 lines) | stat: -rw-r--r-- 9,044 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
 * Copyright (C) 2022 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "level_zero/tools/source/sysman/temperature/linux/os_temperature_imp.h"

#include "level_zero/tools/source/sysman/linux/pmt/pmt.h"

#include "sysman/linux/os_sysman_imp.h"

namespace L0 {

constexpr uint32_t numSocTemperatureEntries = 7;     // entries would be PCH or GT_TEMP, DRAM, SA, PSF, DE, PCIE, TYPEC
constexpr uint32_t numCoreTemperatureEntries = 4;    // entries would be CORE0, CORE1, CORE2, CORE3
constexpr uint32_t numComputeTemperatureEntries = 3; // entries would be IA, GT and LLC
constexpr uint32_t invalidMaxTemperature = 125;
constexpr uint32_t invalidMinTemperature = 10;

ze_result_t LinuxTemperatureImp::getProperties(zes_temp_properties_t *pProperties) {
    pProperties->type = type;
    pProperties->onSubdevice = 0;
    pProperties->subdeviceId = 0;
    if (isSubdevice) {
        pProperties->onSubdevice = isSubdevice;
        pProperties->subdeviceId = subdeviceId;
    }
    return ZE_RESULT_SUCCESS;
}

ze_result_t LinuxTemperatureImp::getGlobalMaxTemperatureNoSubDevice(double *pTemperature) {
    auto isValidTemperature = [](auto temperature) {
        if ((temperature > invalidMaxTemperature) || (temperature < invalidMinTemperature)) {
            return false;
        }
        return true;
    };

    auto getMaxTemperature = [&](auto temperature, auto numTemperatureEntries) {
        uint32_t maxTemperature = 0;
        for (uint32_t count = 0; count < numTemperatureEntries; count++) {
            uint32_t localTemperatureVal = (temperature >> (8 * count)) & 0xff;
            if (isValidTemperature(localTemperatureVal)) {
                if (localTemperatureVal > maxTemperature) {
                    maxTemperature = localTemperatureVal;
                }
            }
        }
        return maxTemperature;
    };

    ze_result_t result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    uint32_t maxComputeTemperature = 0;
    uint32_t maxCoreTemperature = 0;
    std::string key;
    if (productFamily == IGFX_DG1) {
        uint32_t computeTemperature = 0;
        key = "COMPUTE_TEMPERATURES";
        result = pPmt->readValue(key, computeTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }
        // Check max temperature among IA, GT and LLC sensors across COMPUTE_TEMPERATURES
        maxComputeTemperature = getMaxTemperature(computeTemperature, numComputeTemperatureEntries);

        uint32_t coreTemperature = 0;
        key = "CORE_TEMPERATURES";
        result = pPmt->readValue(key, coreTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }
        // Check max temperature among CORE0, CORE1, CORE2, CORE3 sensors across CORE_TEMPERATURES
        maxCoreTemperature = getMaxTemperature(coreTemperature, numCoreTemperatureEntries);
    }

    // SOC_TEMPERATURES is present in all product families
    uint64_t socTemperature = 0;
    key = "SOC_TEMPERATURES";
    result = pPmt->readValue(key, socTemperature);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }
    // Check max temperature among possible sensors like PCH or GT_TEMP, DRAM, SA, PSF, DE, PCIE, TYPEC across SOC_TEMPERATURES
    uint32_t maxSocTemperature = getMaxTemperature(socTemperature, numSocTemperatureEntries);

    *pTemperature = static_cast<double>(std::max({maxComputeTemperature, maxCoreTemperature, maxSocTemperature}));

    return result;
}

ze_result_t LinuxTemperatureImp::getGlobalMaxTemperature(double *pTemperature) {
    // For XE_HP_SDV and PVC single tile devices, telemetry info is retrieved from
    // tile's telem node rather from root device telem node.
    if ((!isSubdevice) && (!((productFamily == IGFX_PVC) || (productFamily == IGFX_XE_HP_SDV)))) {
        return getGlobalMaxTemperatureNoSubDevice(pTemperature);
    }
    uint32_t globalMaxTemperature = 0;
    std::string key("TileMaxTemperature");
    ze_result_t result = pPmt->readValue(key, globalMaxTemperature);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }
    *pTemperature = static_cast<double>(globalMaxTemperature);
    return result;
}

ze_result_t LinuxTemperatureImp::getGpuMaxTemperatureNoSubDevice(double *pTemperature) {
    double gpuMaxTemperature = 0;
    uint64_t socTemperature = 0;
    // Gpu temperature is obtained from GT_TEMP in SOC_TEMPERATURE's bit 0 to 7.
    std::string key = "SOC_TEMPERATURES";
    auto result = pPmt->readValue(key, socTemperature);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }
    gpuMaxTemperature = static_cast<double>(socTemperature & 0xff);

    if (productFamily == IGFX_DG1) {
        // In DG1 platform, Gpu Max Temperature is obtained from COMPUTE_TEMPERATURE only
        uint32_t computeTemperature = 0;
        std::string key("COMPUTE_TEMPERATURES");
        ze_result_t result = pPmt->readValue(key, computeTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }

        // GT temperature could be read via 8th to 15th bit in the value read in temperature
        computeTemperature = (computeTemperature >> 8) & 0xff;
        gpuMaxTemperature = static_cast<double>(computeTemperature);
    }
    *pTemperature = gpuMaxTemperature;
    return ZE_RESULT_SUCCESS;
}

ze_result_t LinuxTemperatureImp::getGpuMaxTemperature(double *pTemperature) {
    if ((!isSubdevice) && (!((productFamily == IGFX_PVC) || (productFamily == IGFX_XE_HP_SDV)))) {
        return getGpuMaxTemperatureNoSubDevice(pTemperature);
    }
    uint32_t gpuMaxTemperature = 0;
    std::string key("GTMaxTemperature");
    ze_result_t result = pPmt->readValue(key, gpuMaxTemperature);
    if (result != ZE_RESULT_SUCCESS) {
        return result;
    }
    *pTemperature = static_cast<double>(gpuMaxTemperature);
    return result;
}

ze_result_t LinuxTemperatureImp::getMemoryMaxTemperature(double *pTemperature) {
    ze_result_t result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    uint32_t numHbmModules = 0u;
    if (productFamily == IGFX_XE_HP_SDV) {
        numHbmModules = 2u;
    } else if (productFamily == IGFX_PVC) {
        numHbmModules = 4u;
    } else {
        return ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    }

    std::vector<uint32_t> maxDeviceTemperatureList;
    for (auto hbmModuleIndex = 0u; hbmModuleIndex < numHbmModules; hbmModuleIndex++) {
        uint32_t maxDeviceTemperature = 0;
        // To read HBM 0's max device temperature key would be HBM0MaxDeviceTemperature
        std::string key = "HBM" + std::to_string(hbmModuleIndex) + "MaxDeviceTemperature";
        result = pPmt->readValue(key, maxDeviceTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }
        maxDeviceTemperatureList.push_back(maxDeviceTemperature);
    }

    *pTemperature = static_cast<double>(*std::max_element(maxDeviceTemperatureList.begin(), maxDeviceTemperatureList.end()));
    return result;
}

ze_result_t LinuxTemperatureImp::getSensorTemperature(double *pTemperature) {
    ze_result_t result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
    switch (type) {
    case ZES_TEMP_SENSORS_GLOBAL:
        result = getGlobalMaxTemperature(pTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }
        break;
    case ZES_TEMP_SENSORS_GPU:
        result = getGpuMaxTemperature(pTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }
        break;
    case ZES_TEMP_SENSORS_MEMORY:
        result = getMemoryMaxTemperature(pTemperature);
        if (result != ZE_RESULT_SUCCESS) {
            return result;
        }
        break;
    default:
        *pTemperature = 0;
        result = ZE_RESULT_ERROR_UNSUPPORTED_FEATURE;
        break;
    }

    return result;
}

bool LinuxTemperatureImp::isTempModuleSupported() {
    if ((!isSubdevice) && (!((productFamily == IGFX_PVC) || (productFamily == IGFX_XE_HP_SDV)))) {
        if (type == ZES_TEMP_SENSORS_MEMORY) {
            return false;
        }
    }

    return (pPmt != nullptr);
}

void LinuxTemperatureImp::setSensorType(zes_temp_sensors_t sensorType) {
    type = sensorType;
}

LinuxTemperatureImp::LinuxTemperatureImp(OsSysman *pOsSysman, ze_bool_t onSubdevice,
                                         uint32_t subdeviceId) : subdeviceId(subdeviceId), isSubdevice(onSubdevice) {
    LinuxSysmanImp *pLinuxSysmanImp = static_cast<LinuxSysmanImp *>(pOsSysman);
    pPmt = pLinuxSysmanImp->getPlatformMonitoringTechAccess(subdeviceId);
    productFamily = SysmanDeviceImp::getProductFamily(pLinuxSysmanImp->getDeviceHandle());
}

std::unique_ptr<OsTemperature> OsTemperature::create(OsSysman *pOsSysman, ze_bool_t onSubdevice, uint32_t subdeviceId, zes_temp_sensors_t sensorType) {
    std::unique_ptr<LinuxTemperatureImp> pLinuxTemperatureImp = std::make_unique<LinuxTemperatureImp>(pOsSysman, onSubdevice, subdeviceId);
    pLinuxTemperatureImp->setSensorType(sensorType);
    return pLinuxTemperatureImp;
}

} // namespace L0