File: kernel_info.cpp

package info (click to toggle)
intel-compute-runtime 22.43.24595.41-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 57,740 kB
  • sloc: cpp: 631,142; lisp: 3,515; sh: 470; makefile: 76; python: 21
file content (195 lines) | stat: -rw-r--r-- 8,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Copyright (C) 2018-2022 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/program/kernel_info.h"

#include "shared/source/device/device.h"
#include "shared/source/device_binary_format/patchtokens_decoder.h"
#include "shared/source/helpers/aligned_memory.h"
#include "shared/source/helpers/blit_commands_helper.h"
#include "shared/source/helpers/hw_helper.h"
#include "shared/source/helpers/kernel_helpers.h"
#include "shared/source/helpers/ptr_math.h"
#include "shared/source/helpers/string.h"
#include "shared/source/memory_manager/memory_manager.h"

#include <cstdint>
#include <cstring>
#include <map>
#include <sstream>
#include <unordered_map>

namespace NEO {

struct KernelArgumentType {
    const char *argTypeQualifier;
    uint64_t argTypeQualifierValue;
};

WorkSizeInfo::WorkSizeInfo(uint32_t maxWorkGroupSize, bool hasBarriers, uint32_t simdSize, uint32_t slmTotalSize, const HardwareInfo *hwInfo, uint32_t numThreadsPerSubSlice, uint32_t localMemSize, bool imgUsed, bool yTiledSurface, bool disableEUFusion) {
    this->maxWorkGroupSize = maxWorkGroupSize;
    this->hasBarriers = hasBarriers;
    this->simdSize = simdSize;
    this->slmTotalSize = slmTotalSize;
    this->coreFamily = hwInfo->platform.eRenderCoreFamily;
    this->numThreadsPerSubSlice = numThreadsPerSubSlice;
    this->localMemSize = localMemSize;
    this->imgUsed = imgUsed;
    this->yTiledSurfaces = yTiledSurface;

    setMinWorkGroupSize(hwInfo, disableEUFusion);
}

void WorkSizeInfo::setIfUseImg(const KernelInfo &kernelInfo) {
    for (const auto &arg : kernelInfo.kernelDescriptor.payloadMappings.explicitArgs) {
        if (arg.is<ArgDescriptor::ArgTImage>()) {
            imgUsed = true;
            yTiledSurfaces = true;
            return;
        }
    }
}

void WorkSizeInfo::setMinWorkGroupSize(const HardwareInfo *hwInfo, bool disableEUFusion) {
    minWorkGroupSize = 0;
    if (hasBarriers) {
        uint32_t maxBarriersPerHSlice = (coreFamily >= IGFX_GEN9_CORE) ? 32 : 16;
        minWorkGroupSize = numThreadsPerSubSlice * simdSize / maxBarriersPerHSlice;
    }
    if (slmTotalSize > 0) {
        if (localMemSize < slmTotalSize) {
            PRINT_DEBUG_STRING(NEO::DebugManager.flags.PrintDebugMessages.get(), stderr, "Size of SLM (%u) larger than available (%u)\n", slmTotalSize, localMemSize);
        }
        UNRECOVERABLE_IF(localMemSize < slmTotalSize);
        minWorkGroupSize = std::max(maxWorkGroupSize / ((localMemSize / slmTotalSize)), minWorkGroupSize);
    }

    const auto &hwHelper = HwHelper::get(hwInfo->platform.eRenderCoreFamily);
    if (hwHelper.isFusedEuDispatchEnabled(*hwInfo, disableEUFusion)) {
        minWorkGroupSize *= 2;
    }
}

void WorkSizeInfo::checkRatio(const size_t workItems[3]) {
    if (slmTotalSize > 0) {
        useRatio = true;
        targetRatio = log((float)workItems[0]) - log((float)workItems[1]);
        useStrictRatio = false;
    } else if (yTiledSurfaces == true) {
        useRatio = true;
        targetRatio = YTilingRatioValue;
        useStrictRatio = true;
    }
}

KernelInfo::~KernelInfo() {
    delete[] crossThreadData;
}

size_t KernelInfo::getSamplerStateArrayCount() const {
    return kernelDescriptor.payloadMappings.samplerTable.numSamplers;
}
size_t KernelInfo::getSamplerStateArraySize(const HardwareInfo &hwInfo) const {
    size_t samplerStateArraySize = getSamplerStateArrayCount() * HwHelper::get(hwInfo.platform.eRenderCoreFamily).getSamplerStateSize();
    return samplerStateArraySize;
}

size_t KernelInfo::getBorderColorOffset() const {
    size_t borderColorOffset = 0;
    if (kernelDescriptor.payloadMappings.samplerTable.numSamplers > 0U) {
        borderColorOffset = kernelDescriptor.payloadMappings.samplerTable.borderColor;
    }
    return borderColorOffset;
}

uint32_t KernelInfo::getConstantBufferSize() const {
    return kernelDescriptor.kernelAttributes.crossThreadDataSize;
}
int32_t KernelInfo::getArgNumByName(const char *name) const {
    int32_t argNum = 0;
    for (const auto &argMeta : kernelDescriptor.explicitArgsExtendedMetadata) {
        if (argMeta.argName.compare(name) == 0) {
            return argNum;
        }
        ++argNum;
    }
    return -1;
}

bool KernelInfo::createKernelAllocation(const Device &device, bool internalIsa) {
    UNRECOVERABLE_IF(kernelAllocation);
    auto kernelIsaSize = heapInfo.KernelHeapSize;
    const auto allocType = internalIsa ? AllocationType::KERNEL_ISA_INTERNAL : AllocationType::KERNEL_ISA;

    if (device.getMemoryManager()->isKernelBinaryReuseEnabled()) {
        auto lock = device.getMemoryManager()->lockKernelAllocationMap();
        auto kernelName = this->kernelDescriptor.kernelMetadata.kernelName;
        auto &storedAllocations = device.getMemoryManager()->getKernelAllocationMap();
        auto kernelAllocations = storedAllocations.find(kernelName);
        if (kernelAllocations != storedAllocations.end()) {
            kernelAllocation = kernelAllocations->second.kernelAllocation;
            kernelAllocations->second.reuseCounter++;
            auto &hwInfo = device.getHardwareInfo();
            auto &hwInfoConfig = *HwInfoConfig::get(hwInfo.platform.eProductFamily);

            return MemoryTransferHelper::transferMemoryToAllocation(hwInfoConfig.isBlitCopyRequiredForLocalMemory(hwInfo, *kernelAllocation),
                                                                    device, kernelAllocation, 0, heapInfo.pKernelHeap,
                                                                    static_cast<size_t>(kernelIsaSize));
        } else {
            kernelAllocation = device.getMemoryManager()->allocateGraphicsMemoryWithProperties({device.getRootDeviceIndex(), kernelIsaSize, allocType, device.getDeviceBitfield()});
            storedAllocations.insert(std::make_pair(kernelName, MemoryManager::KernelAllocationInfo(kernelAllocation, 1u)));
        }
    } else {
        kernelAllocation = device.getMemoryManager()->allocateGraphicsMemoryWithProperties({device.getRootDeviceIndex(), kernelIsaSize, allocType, device.getDeviceBitfield()});
    }

    if (!kernelAllocation) {
        return false;
    }

    auto &hwInfo = device.getHardwareInfo();
    auto &hwInfoConfig = *HwInfoConfig::get(hwInfo.platform.eProductFamily);

    return MemoryTransferHelper::transferMemoryToAllocation(hwInfoConfig.isBlitCopyRequiredForLocalMemory(hwInfo, *kernelAllocation),
                                                            device, kernelAllocation, 0, heapInfo.pKernelHeap,
                                                            static_cast<size_t>(kernelIsaSize));
}

void KernelInfo::apply(const DeviceInfoKernelPayloadConstants &constants) {
    if (nullptr == this->crossThreadData) {
        return;
    }

    const auto &implicitArgs = kernelDescriptor.payloadMappings.implicitArgs;
    const auto privateMemorySize = static_cast<uint32_t>(KernelHelper::getPrivateSurfaceSize(kernelDescriptor.kernelAttributes.perHwThreadPrivateMemorySize,
                                                                                             constants.computeUnitsUsedForScratch));

    auto setIfValidOffset = [&](auto value, NEO::CrossThreadDataOffset offset) {
        if (isValidOffset(offset)) {
            *ptrOffset(reinterpret_cast<decltype(value) *>(crossThreadData), offset) = value;
        }
    };
    setIfValidOffset(reinterpret_cast<uintptr_t>(constants.slmWindow), implicitArgs.localMemoryStatelessWindowStartAddres);
    setIfValidOffset(constants.slmWindowSize, implicitArgs.localMemoryStatelessWindowSize);
    setIfValidOffset(privateMemorySize, implicitArgs.privateMemorySize);
    setIfValidOffset(constants.maxWorkGroupSize, implicitArgs.maxWorkGroupSize);
}

std::string concatenateKernelNames(ArrayRef<KernelInfo *> kernelInfos) {
    std::string semiColonDelimitedKernelNameStr;

    for (const auto &kernelInfo : kernelInfos) {
        if (!semiColonDelimitedKernelNameStr.empty()) {
            semiColonDelimitedKernelNameStr += ';';
        }
        semiColonDelimitedKernelNameStr += kernelInfo->kernelDescriptor.kernelMetadata.kernelName;
    }

    return semiColonDelimitedKernelNameStr;
}

} // namespace NEO