File: execution_environment.cpp

package info (click to toggle)
intel-compute-runtime 25.35.35096.9-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 79,324 kB
  • sloc: cpp: 926,243; lisp: 3,433; sh: 715; makefile: 162; python: 21
file content (432 lines) | stat: -rw-r--r-- 18,181 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
 * Copyright (C) 2018-2025 Intel Corporation
 *
 * SPDX-License-Identifier: MIT
 *
 */

#include "shared/source/execution_environment/execution_environment.h"

#include "shared/source/built_ins/built_ins.h"
#include "shared/source/built_ins/sip.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/direct_submission/direct_submission_controller.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/affinity_mask.h"
#include "shared/source/helpers/bindless_heaps_helper.h"
#include "shared/source/helpers/driver_model_type.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/hw_info.h"
#include "shared/source/helpers/string_helpers.h"
#include "shared/source/memory_manager/memory_manager.h"
#include "shared/source/memory_manager/os_agnostic_memory_manager.h"
#include "shared/source/memory_manager/unified_memory_reuse_cleaner.h"
#include "shared/source/os_interface/debug_env_reader.h"
#include "shared/source/os_interface/driver_info.h"
#include "shared/source/os_interface/os_environment.h"
#include "shared/source/os_interface/os_interface.h"
#include "shared/source/os_interface/product_helper.h"

namespace NEO {
ExecutionEnvironment::ExecutionEnvironment() {
    this->configureNeoEnvironment();
}

void ExecutionEnvironment::releaseRootDeviceEnvironmentResources(RootDeviceEnvironment *rootDeviceEnvironment) {
    if (rootDeviceEnvironment == nullptr) {
        return;
    }
    SipKernel::freeSipKernels(rootDeviceEnvironment, memoryManager.get());
    if (rootDeviceEnvironment->builtins.get()) {
        rootDeviceEnvironment->builtins->freeSipKernels(memoryManager.get());
        rootDeviceEnvironment->builtins.reset();
    }
    rootDeviceEnvironment->releaseDummyAllocation();
    rootDeviceEnvironment->bindlessHeapsHelper.reset();
}

ExecutionEnvironment::~ExecutionEnvironment() {
    if (directSubmissionController) {
        directSubmissionController->stopThread();
    }
    if (unifiedMemoryReuseCleaner) {
        unifiedMemoryReuseCleaner->stopThread();
    }
    if (memoryManager) {
        memoryManager->commonCleanup();
        for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) {
            releaseRootDeviceEnvironmentResources(rootDeviceEnvironment.get());
        }
    }
    rootDeviceEnvironments.clear();
    mapOfSubDeviceIndices.clear();
    this->restoreCcsMode();
}

bool ExecutionEnvironment::initializeMemoryManager() {
    if (this->memoryManager) {
        return memoryManager->isInitialized();
    }

    auto csrType = obtainCsrTypeFromIntegerValue(debugManager.flags.SetCommandStreamReceiver.get(), CommandStreamReceiverType::hardware);

    switch (csrType) {
    case CommandStreamReceiverType::tbx:
    case CommandStreamReceiverType::tbxWithAub:
    case CommandStreamReceiverType::aub:
    case CommandStreamReceiverType::nullAub:
        memoryManager = std::make_unique<OsAgnosticMemoryManager>(*this);
        break;
    case CommandStreamReceiverType::hardware:
    case CommandStreamReceiverType::hardwareWithAub:
    default: {
        auto driverModelType = DriverModelType::unknown;
        if (this->rootDeviceEnvironments[0]->osInterface && this->rootDeviceEnvironments[0]->osInterface->getDriverModel()) {
            driverModelType = this->rootDeviceEnvironments[0]->osInterface->getDriverModel()->getDriverModelType();
        }
        memoryManager = MemoryManager::createMemoryManager(*this, driverModelType);
    } break;
    }

    memoryManager->initUsmReuseLimits();

    return memoryManager->isInitialized();
}

void ExecutionEnvironment::calculateMaxOsContextCount() {
    MemoryManager::maxOsContextCount = 0u;
    for (const auto &rootDeviceEnvironment : this->rootDeviceEnvironments) {
        auto hwInfo = rootDeviceEnvironment->getHardwareInfo();
        auto &gfxCoreHelper = rootDeviceEnvironment->getHelper<GfxCoreHelper>();
        auto &engineInstances = gfxCoreHelper.getGpgpuEngineInstances(*rootDeviceEnvironment);
        auto osContextCount = static_cast<uint32_t>(engineInstances.size());
        auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo);
        bool hasRootCsr = subDevicesCount > 1;

        uint32_t numRegularEngines = 0;
        uint32_t numHpEngines = 0;
        for (const auto &engine : engineInstances) {
            if (engine.second == EngineUsage::regular) {
                numRegularEngines++;
            } else if (engine.second == EngineUsage::highPriority) {
                numHpEngines++;
            }
        }

        uint32_t numRootContexts = hasRootCsr ? 1 : 0;
        uint32_t numSecondaryContexts = 0;
        if (gfxCoreHelper.areSecondaryContextsSupported()) {

            auto groupCount = gfxCoreHelper.getContextGroupContextsCount();
            if (rootDeviceEnvironment->osInterface && rootDeviceEnvironment->osInterface->getAggregatedProcessCount() > 1) {
                groupCount = std::max(groupCount / rootDeviceEnvironment->osInterface->getAggregatedProcessCount(), 2u);
            }
            numSecondaryContexts += numRegularEngines * groupCount;
            numSecondaryContexts += numHpEngines * groupCount;
            osContextCount -= (numRegularEngines + numHpEngines);

            numRootContexts *= groupCount;
        }

        MemoryManager::maxOsContextCount += (numSecondaryContexts + osContextCount) * subDevicesCount + numRootContexts;
    }
}

DirectSubmissionController *ExecutionEnvironment::initializeDirectSubmissionController() {
    std::lock_guard<std::mutex> lockForInit(initializeDirectSubmissionControllerMutex);
    auto initializeDirectSubmissionController = DirectSubmissionController::isSupported();

    if (debugManager.flags.SetCommandStreamReceiver.get() > 0) {
        initializeDirectSubmissionController = false;
    }

    if (debugManager.flags.EnableDirectSubmissionController.get() != -1) {
        initializeDirectSubmissionController = debugManager.flags.EnableDirectSubmissionController.get();
    }

    if (initializeDirectSubmissionController && this->directSubmissionController == nullptr) {
        this->directSubmissionController = std::make_unique<DirectSubmissionController>();
        this->directSubmissionController->startThread();
    }

    return directSubmissionController.get();
}

void ExecutionEnvironment::initializeUnifiedMemoryReuseCleaner(bool isAnyDirectSubmissionLightEnabled) {
    std::lock_guard<std::mutex> lock(initializeUnifiedMemoryReuseCleanerMutex);
    auto initializeUnifiedMemoryReuseCleaner = UnifiedMemoryReuseCleaner::isSupported() && !isAnyDirectSubmissionLightEnabled;

    if (debugManager.flags.ExperimentalUSMAllocationReuseCleaner.get() != -1) {
        initializeUnifiedMemoryReuseCleaner = debugManager.flags.ExperimentalUSMAllocationReuseCleaner.get() == 1;
    }

    if (initializeUnifiedMemoryReuseCleaner && nullptr == this->unifiedMemoryReuseCleaner) {
        this->unifiedMemoryReuseCleaner = std::make_unique<UnifiedMemoryReuseCleaner>(isAnyDirectSubmissionLightEnabled);
        this->unifiedMemoryReuseCleaner->startThread();
    }
}

void ExecutionEnvironment::prepareRootDeviceEnvironments(uint32_t numRootDevices) {
    if (rootDeviceEnvironments.size() < numRootDevices) {
        rootDeviceEnvironments.resize(numRootDevices);
    }
    for (auto rootDeviceIndex = 0u; rootDeviceIndex < numRootDevices; rootDeviceIndex++) {
        if (!rootDeviceEnvironments[rootDeviceIndex]) {
            rootDeviceEnvironments[rootDeviceIndex] = std::make_unique<RootDeviceEnvironment>(*this);
        }
    }
}

void ExecutionEnvironment::prepareForCleanup() const {
    for (auto &rootDeviceEnvironment : rootDeviceEnvironments) {
        if (rootDeviceEnvironment) {
            rootDeviceEnvironment->prepareForCleanup();
        }
    }
}

void ExecutionEnvironment::prepareRootDeviceEnvironment(const uint32_t rootDeviceIndexForReInit) {
    rootDeviceEnvironments[rootDeviceIndexForReInit] = std::make_unique<RootDeviceEnvironment>(*this);
}

int ExecutionEnvironment::setErrorDescription(const std::string &str) {
    auto threadId = std::this_thread::get_id();
    {
        std::lock_guard<std::mutex> errorDescsLock(errorDescsMutex);
        if (errorDescs.find(threadId) == errorDescs.end()) {
            errorDescs[threadId] = str;
        } else {
            errorDescs[threadId].clear();
            errorDescs[threadId] = str;
        }
    }
    return static_cast<int>(str.size());
}

void ExecutionEnvironment::getErrorDescription(const char **ppString) {
    auto threadId = std::this_thread::get_id();
    {
        std::lock_guard<std::mutex> errorDescsLock(errorDescsMutex);
        if (errorDescs.find(threadId) == errorDescs.end()) {
            errorDescs[threadId] = std::string();
        }
    }
    *ppString = errorDescs[threadId].c_str();
}

int ExecutionEnvironment::clearErrorDescription() {
    auto threadId = std::this_thread::get_id();
    {
        std::lock_guard<std::mutex> errorDescsLock(errorDescsMutex);
        if (errorDescs.find(threadId) != errorDescs.end()) {
            errorDescs[threadId].clear();
        }
    }
    return 0;
}

bool ExecutionEnvironment::getSubDeviceHierarchy(uint32_t index, std::tuple<uint32_t, uint32_t, uint32_t> *subDeviceMap) {
    if (mapOfSubDeviceIndices.find(index) != mapOfSubDeviceIndices.end()) {
        *subDeviceMap = mapOfSubDeviceIndices.at(index);
        return true;
    } else {
        return false;
    }
}

void ExecutionEnvironment::parseAffinityMask() {
    const auto &affinityMaskString = debugManager.flags.ZE_AFFINITY_MASK.get();

    if (affinityMaskString.compare("default") == 0 ||
        affinityMaskString.empty()) {
        return;
    }

    // If the user has requested FLAT or COMBINED device hierarchy models, then report all the sub devices as devices.
    bool exposeSubDevices = this->deviceHierarchyMode != DeviceHierarchyMode::composite;

    // Reserve at least for a size equal to rootDeviceEnvironments.size() times four,
    // which is enough for typical configurations
    uint32_t numRootDevices = static_cast<uint32_t>(rootDeviceEnvironments.size());
    uint32_t numDevices = numRootDevices;
    size_t reservedSizeForIndices = numRootDevices * 4;
    RootDeviceIndicesMap mapOfIndices;
    mapOfIndices.reserve(reservedSizeForIndices);
    uint32_t hwSubDevicesCount = 0u;

    if (exposeSubDevices) {
        for (uint32_t currentRootDevice = 0u; currentRootDevice < numRootDevices; currentRootDevice++) {
            auto hwInfo = rootDeviceEnvironments[currentRootDevice]->getHardwareInfo();

            hwSubDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo);
            uint32_t currentSubDevice = 0;
            mapOfIndices.push_back(std::make_tuple(currentRootDevice, currentSubDevice));
            for (currentSubDevice = 1; currentSubDevice < hwSubDevicesCount; currentSubDevice++) {
                mapOfIndices.push_back(std::make_tuple(currentRootDevice, currentSubDevice));
            }
        }

        numDevices = static_cast<uint32_t>(mapOfIndices.size());
    }

    std::vector<AffinityMaskHelper> affinityMaskHelper(numRootDevices);

    auto affinityMaskEntries = StringHelpers::split(affinityMaskString, ",");

    // Index of the Device to be returned to the user, not the physcial device index.
    uint32_t deviceIndex = 0;
    for (const auto &entry : affinityMaskEntries) {
        auto subEntries = StringHelpers::split(entry, ".");
        uint32_t entryIndex = StringHelpers::toUint32t(subEntries[0]);

        if (entryIndex >= numDevices) {
            continue;
        } else if (exposeSubDevices) {
            // tiles as devices
            // so ignore X.Y
            if (subEntries.size() > 1) {
                continue;
            }

            std::tuple<uint32_t, uint32_t> indexKey = mapOfIndices[entryIndex];
            auto hwDeviceIndex = std::get<0>(indexKey);
            auto tileIndex = std::get<1>(indexKey);

            affinityMaskHelper[hwDeviceIndex].enableGenericSubDevice(tileIndex);
            // Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user.
            mapOfSubDeviceIndices[deviceIndex++] = std::make_tuple(hwDeviceIndex, tileIndex, hwSubDevicesCount);
        } else {
            // cards as devices
            auto hwInfo = rootDeviceEnvironments[entryIndex]->getHardwareInfo();
            auto subDevicesCount = GfxCoreHelper::getSubDevicesCount(hwInfo);

            if (subEntries.size() > 1) {
                uint32_t subDeviceIndex = StringHelpers::toUint32t(subEntries[1]);

                if (subDeviceIndex < subDevicesCount) {
                    if (subEntries.size() == 2) {
                        // Store the Physical Hierarchy for this SubDevice mapped to the Device Index passed to the user.
                        mapOfSubDeviceIndices[entryIndex] = std::make_tuple(entryIndex, subDeviceIndex, subDevicesCount);
                        affinityMaskHelper[entryIndex].enableGenericSubDevice(subDeviceIndex); // Mask: X.Y
                    } else {
                        UNRECOVERABLE_IF(subEntries.size() != 3);
                    }
                }
            } else {
                affinityMaskHelper[entryIndex].enableAllGenericSubDevices(subDevicesCount); // Mask: X
            }
        }
    }

    std::vector<std::unique_ptr<RootDeviceEnvironment>> filteredEnvironments;
    for (uint32_t i = 0u; i < numRootDevices; i++) {
        if (!affinityMaskHelper[i].isDeviceEnabled()) {
            continue;
        }

        rootDeviceEnvironments[i]->deviceAffinityMask = affinityMaskHelper[i];
        filteredEnvironments.emplace_back(rootDeviceEnvironments[i].release());
    }

    rootDeviceEnvironments.swap(filteredEnvironments);
}

void ExecutionEnvironment::sortNeoDevices() {
    std::sort(rootDeviceEnvironments.begin(), rootDeviceEnvironments.end(), comparePciIdBusNumber);
}

void ExecutionEnvironment::setDeviceHierarchyMode(const GfxCoreHelper &gfxCoreHelper) {
    NEO::EnvironmentVariableReader envReader;
    std::string deviceHierarchyMode = envReader.getSetting("ZE_FLAT_DEVICE_HIERARCHY", std::string(""));
    if (strcmp(deviceHierarchyMode.c_str(), "COMPOSITE") == 0) {
        this->deviceHierarchyMode = DeviceHierarchyMode::composite;
    } else if (strcmp(deviceHierarchyMode.c_str(), "FLAT") == 0) {
        this->deviceHierarchyMode = DeviceHierarchyMode::flat;
    } else if (strcmp(deviceHierarchyMode.c_str(), "COMBINED") == 0) {
        this->deviceHierarchyMode = DeviceHierarchyMode::combined;
    } else {
        this->deviceHierarchyMode = gfxCoreHelper.getDefaultDeviceHierarchy();
    }
}

void ExecutionEnvironment::adjustCcsCountImpl(RootDeviceEnvironment *rootDeviceEnvironment) const {
    auto hwInfo = rootDeviceEnvironment->getMutableHardwareInfo();
    auto &productHelper = rootDeviceEnvironment->getHelper<ProductHelper>();
    productHelper.adjustNumberOfCcs(*hwInfo);
}

void ExecutionEnvironment::adjustCcsCount() {
    parseCcsCountLimitations();

    for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceEnvironments.size(); rootDeviceIndex++) {
        auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex];
        UNRECOVERABLE_IF(!rootDeviceEnvironment);
        if (!rootDeviceEnvironment->isNumberOfCcsLimited()) {
            adjustCcsCountImpl(rootDeviceEnvironment.get());
        }
    }
}

void ExecutionEnvironment::adjustCcsCount(const uint32_t rootDeviceIndex) const {
    auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex];
    UNRECOVERABLE_IF(!rootDeviceEnvironment);
    if (rootDeviceNumCcsMap.find(rootDeviceIndex) != rootDeviceNumCcsMap.end()) {
        rootDeviceEnvironment->setNumberOfCcs(rootDeviceNumCcsMap.at(rootDeviceIndex));
    } else {
        adjustCcsCountImpl(rootDeviceEnvironment.get());
    }
}

void ExecutionEnvironment::parseCcsCountLimitations() {
    const auto &numberOfCcsString = debugManager.flags.ZEX_NUMBER_OF_CCS.get();

    if (numberOfCcsString.compare("default") == 0 ||
        numberOfCcsString.empty()) {
        return;
    }

    for (auto rootDeviceIndex = 0u; rootDeviceIndex < rootDeviceEnvironments.size(); rootDeviceIndex++) {
        auto &rootDeviceEnvironment = rootDeviceEnvironments[rootDeviceIndex];
        UNRECOVERABLE_IF(!rootDeviceEnvironment);
        auto &productHelper = rootDeviceEnvironment->getHelper<ProductHelper>();
        productHelper.parseCcsMode(numberOfCcsString, rootDeviceNumCcsMap, rootDeviceIndex, rootDeviceEnvironment.get());
    }
}

void ExecutionEnvironment::configureNeoEnvironment() {
    if (debugManager.flags.NEO_CAL_ENABLED.get()) {
        debugManager.flags.UseKmdMigration.setIfDefault(0);
        debugManager.flags.SplitBcsSize.setIfDefault(256);
    }
}

bool ExecutionEnvironment::comparePciIdBusNumber(std::unique_ptr<RootDeviceEnvironment> &rootDeviceEnvironment1, std::unique_ptr<RootDeviceEnvironment> &rootDeviceEnvironment2) {
    const auto pciOrderVar = debugManager.flags.ZE_ENABLE_PCI_ID_DEVICE_ORDER.get();
    if (!pciOrderVar) {
        auto isIntegrated1 = rootDeviceEnvironment1->getHardwareInfo()->capabilityTable.isIntegratedDevice;
        auto isIntegrated2 = rootDeviceEnvironment2->getHardwareInfo()->capabilityTable.isIntegratedDevice;
        if (isIntegrated1 != isIntegrated2) {
            return isIntegrated2;
        }
    }

    // BDF sample format is : 00:02.0
    auto pciBusInfo1 = rootDeviceEnvironment1->osInterface->getDriverModel()->getPciBusInfo();
    auto pciBusInfo2 = rootDeviceEnvironment2->osInterface->getDriverModel()->getPciBusInfo();

    if (pciBusInfo1.pciDomain != pciBusInfo2.pciDomain) {
        return (pciBusInfo1.pciDomain < pciBusInfo2.pciDomain);
    }

    if (pciBusInfo1.pciBus != pciBusInfo2.pciBus) {
        return (pciBusInfo1.pciBus < pciBusInfo2.pciBus);
    }

    if (pciBusInfo1.pciDevice != pciBusInfo2.pciDevice) {
        return (pciBusInfo1.pciDevice < pciBusInfo2.pciDevice);
    }

    return (pciBusInfo1.pciFunction < pciBusInfo2.pciFunction);
}

} // namespace NEO