1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/*
* Copyright (C) 2018-2025 Intel Corporation
*
* SPDX-License-Identifier: MIT
*
*/
#pragma once
#include "shared/source/command_container/command_encoder.h"
#include "shared/source/command_stream/csr_deps.h"
#include "shared/source/debug_settings/debug_settings_manager.h"
#include "shared/source/execution_environment/root_device_environment.h"
#include "shared/source/helpers/aux_translation.h"
#include "shared/source/helpers/gfx_core_helper.h"
#include "shared/source/helpers/non_copyable_or_moveable.h"
#include "shared/source/helpers/pipe_control_args.h"
#include "shared/source/helpers/string.h"
#include "shared/source/helpers/timestamp_packet_constants.h"
#include "shared/source/helpers/timestamp_packet_container.h"
#include "shared/source/utilities/tag_allocator.h"
#include <cstdint>
namespace NEO {
class CommandStreamReceiver;
class LinearStream;
#pragma pack(1)
template <typename TSize, uint32_t packetCount>
class TimestampPackets : public TagTypeBase {
public:
using ValueT = TSize;
static constexpr AllocationType getAllocationType() {
return AllocationType::timestampPacketTagBuffer;
}
static constexpr TagNodeType getTagNodeType() { return TagNodeType::timestampPacket; }
static constexpr size_t getSinglePacketSize() { return sizeof(Packet); }
void initialize(TSize initValue) {
for (auto &packet : packets) {
packet.contextStart = initValue;
packet.globalStart = initValue;
packet.contextEnd = initValue;
packet.globalEnd = initValue;
}
}
void assignDataToAllTimestamps(uint32_t packetIndex, const void *source) {
memcpy_s(&packets[packetIndex], sizeof(Packet), source, sizeof(Packet));
}
static constexpr size_t getGlobalStartOffset() { return offsetof(Packet, globalStart); }
static constexpr size_t getContextStartOffset() { return offsetof(Packet, contextStart); }
static constexpr size_t getContextEndOffset() { return offsetof(Packet, contextEnd); }
static constexpr size_t getGlobalEndOffset() { return offsetof(Packet, globalEnd); }
uint64_t getContextStartValue(uint32_t packetIndex) const { return static_cast<uint64_t>(packets[packetIndex].contextStart); }
uint64_t getGlobalStartValue(uint32_t packetIndex) const { return static_cast<uint64_t>(packets[packetIndex].globalStart); }
uint64_t getContextEndValue(uint32_t packetIndex) const { return static_cast<uint64_t>(packets[packetIndex].contextEnd); }
uint64_t getGlobalEndValue(uint32_t packetIndex) const { return static_cast<uint64_t>(packets[packetIndex].globalEnd); }
void const *getContextEndAddress(uint32_t packetIndex) const { return static_cast<void const *>(&packets[packetIndex].contextEnd); }
void const *getContextStartAddress(uint32_t packetIndex) const { return static_cast<void const *>(&packets[packetIndex].contextStart); }
uint32_t getPacketCount() const {
return packetCount;
}
protected:
struct alignas(1) Packet {
TSize contextStart = TimestampPacketConstants::initValue;
TSize globalStart = TimestampPacketConstants::initValue;
TSize contextEnd = TimestampPacketConstants::initValue;
TSize globalEnd = TimestampPacketConstants::initValue;
};
Packet packets[packetCount];
};
#pragma pack()
static_assert(((4 * TimestampPacketConstants::preferredPacketCount) * sizeof(uint32_t)) == sizeof(TimestampPackets<uint32_t, TimestampPacketConstants::preferredPacketCount>),
"This structure is consumed by GPU and has to follow specific restrictions for padding and size");
struct TimestampPacketHelper {
static uint64_t getContextEndGpuAddress(const TagNodeBase ×tampPacketNode) {
return timestampPacketNode.getGpuAddress() + timestampPacketNode.getContextEndOffset();
}
static uint64_t getContextStartGpuAddress(const TagNodeBase ×tampPacketNode) {
return timestampPacketNode.getGpuAddress() + timestampPacketNode.getContextStartOffset();
}
static uint64_t getGlobalEndGpuAddress(const TagNodeBase ×tampPacketNode) {
return timestampPacketNode.getGpuAddress() + timestampPacketNode.getGlobalEndOffset();
}
static uint64_t getGlobalStartGpuAddress(const TagNodeBase ×tampPacketNode) {
return timestampPacketNode.getGpuAddress() + timestampPacketNode.getGlobalStartOffset();
}
template <typename GfxFamily>
static void programSemaphore(LinearStream &cmdStream, TagNodeBase ×tampPacketNode) {
using COMPARE_OPERATION = typename GfxFamily::MI_SEMAPHORE_WAIT::COMPARE_OPERATION;
if (debugManager.flags.PrintTimestampPacketUsage.get() == 1) {
printf("\nPID: %u, TSP used for Semaphore: 0x%" PRIX64 ", cmdBuffer pos: 0x%" PRIX64, SysCalls::getProcessId(), timestampPacketNode.getGpuAddress(), cmdStream.getCurrentGpuAddressPosition());
}
auto compareAddress = getContextEndGpuAddress(timestampPacketNode);
for (uint32_t packetId = 0; packetId < timestampPacketNode.getPacketsUsed(); packetId++) {
uint64_t compareOffset = packetId * timestampPacketNode.getSinglePacketSize();
EncodeSemaphore<GfxFamily>::addMiSemaphoreWaitCommand(cmdStream, compareAddress + compareOffset, TimestampPacketConstants::initValue, COMPARE_OPERATION::COMPARE_OPERATION_SAD_NOT_EQUAL_SDD, false, false, false, false, nullptr);
}
}
template <typename GfxFamily>
static void programConditionalBbStartForRelaxedOrdering(LinearStream &cmdStream, TagNodeBase ×tampPacketNode, bool isBcs) {
auto compareAddress = getContextEndGpuAddress(timestampPacketNode);
for (uint32_t packetId = 0; packetId < timestampPacketNode.getPacketsUsed(); packetId++) {
uint64_t compareOffset = packetId * timestampPacketNode.getSinglePacketSize();
EncodeBatchBufferStartOrEnd<GfxFamily>::programConditionalDataMemBatchBufferStart(cmdStream, 0, compareAddress + compareOffset, TimestampPacketConstants::initValue,
NEO::CompareOperation::equal, true, false, isBcs);
}
}
template <typename GfxFamily>
static void programCsrDependenciesForTimestampPacketContainer(LinearStream &cmdStream, const CsrDependencies &csrDependencies, bool relaxedOrderingEnabled, bool isBcs) {
for (auto timestampPacketContainer : csrDependencies.timestampPacketContainer) {
for (auto &node : timestampPacketContainer->peekNodes()) {
if (relaxedOrderingEnabled) {
TimestampPacketHelper::programConditionalBbStartForRelaxedOrdering<GfxFamily>(cmdStream, *node, isBcs);
} else {
TimestampPacketHelper::programSemaphore<GfxFamily>(cmdStream, *node);
}
}
}
}
template <typename GfxFamily>
static void nonStallingContextEndNodeSignal(LinearStream &cmdStream, const TagNodeBase ×tampPacketNode, bool multiTileOperation) {
uint64_t contextEndAddress = getContextEndGpuAddress(timestampPacketNode);
NEO::EncodeStoreMemory<GfxFamily>::programStoreDataImm(cmdStream, contextEndAddress, 0, 0, false, multiTileOperation,
nullptr);
}
template <typename GfxFamily>
static void programCsrDependenciesForForMultiRootDeviceSyncContainer(LinearStream &cmdStream, const CsrDependencies &csrDependencies) {
for (auto timestampPacketContainer : csrDependencies.multiRootTimeStampSyncContainer) {
for (auto &node : timestampPacketContainer->peekNodes()) {
TimestampPacketHelper::programSemaphore<GfxFamily>(cmdStream, *node);
}
}
}
template <typename GfxFamily, AuxTranslationDirection auxTranslationDirection>
static void programSemaphoreForAuxTranslation(LinearStream &cmdStream,
const TimestampPacketDependencies *timestampPacketDependencies,
const RootDeviceEnvironment &rootDeviceEnvironment) {
auto &container = (auxTranslationDirection == AuxTranslationDirection::auxToNonAux)
? timestampPacketDependencies->auxToNonAuxNodes
: timestampPacketDependencies->nonAuxToAuxNodes;
// cache flush after NDR, before NonAuxToAux
if (auxTranslationDirection == AuxTranslationDirection::nonAuxToAux && timestampPacketDependencies->cacheFlushNodes.peekNodes().size() > 0) {
UNRECOVERABLE_IF(timestampPacketDependencies->cacheFlushNodes.peekNodes().size() != 1);
auto cacheFlushTimestampPacketGpuAddress = getContextEndGpuAddress(*timestampPacketDependencies->cacheFlushNodes.peekNodes()[0]);
PipeControlArgs args;
args.dcFlushEnable = MemorySynchronizationCommands<GfxFamily>::getDcFlushEnable(true, rootDeviceEnvironment);
MemorySynchronizationCommands<GfxFamily>::addBarrierWithPostSyncOperation(
cmdStream, PostSyncMode::immediateData,
cacheFlushTimestampPacketGpuAddress, 0, rootDeviceEnvironment, args);
}
for (auto &node : container.peekNodes()) {
TimestampPacketHelper::programSemaphore<GfxFamily>(cmdStream, *node);
}
}
template <typename GfxFamily, AuxTranslationDirection auxTranslationDirection>
static size_t getRequiredCmdStreamSizeForAuxTranslationNodeDependency(size_t count, const RootDeviceEnvironment &rootDeviceEnvironment, bool cacheFlushForBcsRequired) {
size_t size = count * TimestampPacketHelper::getRequiredCmdStreamSizeForNodeDependencyWithBlitEnqueue<GfxFamily>();
if (auxTranslationDirection == AuxTranslationDirection::nonAuxToAux && cacheFlushForBcsRequired) {
size += MemorySynchronizationCommands<GfxFamily>::getSizeForBarrierWithPostSyncOperation(rootDeviceEnvironment, NEO::PostSyncMode::immediateData);
}
return size;
}
template <typename GfxFamily>
static size_t getRequiredCmdStreamSizeForNodeDependencyWithBlitEnqueue() {
return NEO::EncodeSemaphore<GfxFamily>::getSizeMiSemaphoreWait();
}
template <typename GfxFamily>
static size_t getRequiredCmdStreamSizeForSemaphoreNodeDependency(TagNodeBase ×tampPacketNode) {
return (timestampPacketNode.getPacketsUsed() * NEO::EncodeSemaphore<GfxFamily>::getSizeMiSemaphoreWait());
}
template <typename GfxFamily>
static size_t getRequiredCmdStreamSizeForRelaxedOrderingNodeDependency(TagNodeBase ×tampPacketNode) {
return (timestampPacketNode.getPacketsUsed() * EncodeBatchBufferStartOrEnd<GfxFamily>::getCmdSizeConditionalDataMemBatchBufferStart(false));
}
template <typename GfxFamily>
static size_t getRequiredCmdStreamSize(const CsrDependencies &csrDependencies, bool relaxedOrderingEnabled) {
size_t totalCommandsSize = 0;
for (auto timestampPacketContainer : csrDependencies.timestampPacketContainer) {
for (auto &node : timestampPacketContainer->peekNodes()) {
if (relaxedOrderingEnabled) {
totalCommandsSize += getRequiredCmdStreamSizeForRelaxedOrderingNodeDependency<GfxFamily>(*node);
} else {
totalCommandsSize += getRequiredCmdStreamSizeForSemaphoreNodeDependency<GfxFamily>(*node);
}
}
}
return totalCommandsSize;
}
template <typename GfxFamily>
static size_t getRequiredCmdStreamSizeForMultiRootDeviceSyncNodesContainer(const CsrDependencies &csrDependencies) {
return csrDependencies.multiRootTimeStampSyncContainer.size() * NEO::EncodeSemaphore<GfxFamily>::getSizeMiSemaphoreWait();
}
};
} // namespace NEO
|